
School of Computing

Model-Based Neural Networks
For Invariant Pattern Recognition

David McGregor Squire

This thesis is presented as part of the requirements for

the award of the Degree of Doctor of Philosophy

of the

Curtin University of Technology

October 27, 1996

i

Acknowledgments

All attempts to acknowledge those who have helped a large project to completion are

prone to the risk that someone may be left out. Nevertheless, I commence by thanking

my supervisor, Terry Caelli. I cannot imagine a PhD. student being more fortunate

than to have Terry as a supervisor. Throughout the entire process he has remained

enthusiastic, encouraging and stimulating. Moreover, he has been a friend, providing

support of all kinds.

Special thanks must go to my two good friends Tom Wild and Michael Merrylees.

It is due to them that I commenced working towards this thesis. Tom introduced

me to Terry Caelli, and we shared an introduction to neural networks programming

together. There are functions in the Xnet package for which he is responsible. Michael

was responsible for convincing me that taking on this project was a good idea, and

has always been a fount of good cheer and good ideas. My other close friends, though

perhaps not directly involved academically, have been vital in sustaining me. They

know who they are.

All the members of the Vision Group, in both its Melbourne University and Curtin

University incarnations, have collaborated to produce a happy, stimulating environ-

ment. In particular, I would like to thank Craig Dillon and Mark Ollila for help at

various times with C programming and typesetting with LATEX. John Krivitsky has

provided similar help, and has also responded promptly and e�ectively to my system

administration requests, which were no doubt less than reasonable at times. Tom

Drummond was a marvelous universal sounding-board, particularly in mathematical

matters. All of them have become friends.

Finally, I must thank my parents, who have been constantly supportive throughout

the years I have worked towards this thesis, as indeed they have always been. They

have always encouraged me, and fostered self-belief with their faith and love.

David Squire

February 10, 1997

ii

Abstract

In this thesis, the notion of Model-Based Neural Networks is introduced. Model-Based

Neural Networks, whilst retaining the essential structure and advantages of traditional

neural networks, enable explicit modeling of the target system. This can result in dra-

matically improved generalization of classi�cation performance to patterns not present

in the training data, and representation in considerably lower-dimensional state spaces.

An important problem in many areas of computer vision is invariant pattern recog-

nition. This is the chosen domain for demonstrating the e�cacy of the Model-Based

Neural Network approach. Model-Based Neural Networks can be constructed which

have responses which are invariant to speci�ed transformations of the input data. Such

networks can be trained with much smaller training sets than are required by traditional

networks, since it is no longer necessary to provide examples of transformed versions of

the input prototypes. This, coupled with the reduction in the dimensionality of the pa-

rameter space, means that training such networks is often much less computationally-

expensive than the traditional alternative.

To situate this work, a review of existing general techniques for invariant pattern

recognition is presented in Chapter 2, and of previous neural network-based approaches

in Chapter 3. Chapter 4 presents a variety of di�erent forms of Model-Based Neural

Network, and demonstrates their utility on a range of invariant pattern recognition

problems, both real and synthetic. Included is a comparison with an earlier study,

which reveals the great improvements possible with Model-Based Neural Networks.

Chapter 5 introduces a new invariant feature of two-dimensional contours, the In-

variance Signature. It is shown in Chapter 6 that a Model-Based Neural Network can

be constructed which calculates this multi-dimensional feature, and classi�es patterns

on this basis. Chapter 7 reports experimental results demonstrating that such Invari-

ance Signature-based MBNNs can be employed successfully for shift-, rotation- and

scale-invariant optical character recognition.

CONTENTS iii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

1.1 Introduction . 1

1.1.1 The Classical Feed-forward Neural Network 2

1.1.2 A Matrix View of Neural Networks 5

2 General Methods for Invariant Pattern Recognition 8

2.1 Integral Transforms . 9

2.1.1 The Fourier Transform . 11

2.1.2 The Fourier-Mellin Transform . 12

2.1.3 Canonical Coordinates . 14

2.2 Moments . 19

2.2.1 Geometrical Moments . 19

2.2.2 Zernike Moments . 20

2.3 Matched Filtering and Convolution Techniques 22

2.3.1 Matched Filtering . 22

2.3.2 Cross-correlation . 23

2.3.3 Filters Based On Multiple Templates 25

2.4 Parts and Relationships . 26

2.4.1 Sub-Graph Matching . 27

2.4.2 Deformable Templates . 27

2.5 Contour-Based Methods . 28

2.5.1 The Hough Transform . 28

2.5.2 Algebraic and Di�erential Invariants 29

3 Neural Network Approaches to Generalization and Invariance 34

3.1 Quantifying Generalization . 36

3.1.1 Hamming Distance . 37

CONTENTS iv

3.1.2 Comparison with a Teacher Network 38

3.1.3 The E�ective Number of Parameters 39

3.1.4 The Vapnik-Chervonenkis Dimension 40

3.2 Improving Generalization . 42

3.2.1 Large Training Sets . 42

3.2.2 Cognitron and Neocognitron . 43

3.2.3 Cascade-Correlation . 44

3.2.4 Massive Weight-Sharing . 45

3.2.5 Pruning Techniques . 46

3.2.6 Using Prior Information . 46

3.3 Regularization Approaches to Invariance 48

3.3.1 Weight Decay . 48

3.3.2 Soft-Weight Sharing . 49

3.3.3 Tangent Prop . 49

3.4 Invariant Representations and Features 51

3.4.1 Invariant Representations . 51

3.4.2 Invariant Features . 52

3.4.3 Higher-Order Neural Networks 52

4 Model-Based Neural Networks 55

4.1 The Model-Based Classi�er . 55

4.1.1 Relation to Adaptive Filtering 58

4.2 A Simple Invariance Example . 59

4.3 The Plaut and Hinton Study . 63

4.3.1 A MBNN solution to the Riser/Non-riser Problem 64

4.4 Other Techniques For Improving Generalization 68

4.5 An Extremely Low-dimensional Solution to the R/NR Problem 72

4.5.1 Simulated Annealing . 73

4.5.2 Modi�ed Backpropagation . 76

4.6 Chapter Summary . 77

5 Invariance Signatures 79

5.1 Lie Transformation Groups and Invariance 80

5.1.1 De�nition of a Group . 80

5.1.2 One Parameter Lie Groups in Two Dimensions 80

5.1.3 From In�nitesimal to Finite Transformations 81

5.1.4 Derivation of the Rotation Transformation 82

5.1.5 Functions Invariant Under Lie Transformations 84

5.2 From Local Invariance Measures to Global Invariance 85

5.2.1 The Local Measure of Consistency 85

CONTENTS v

5.2.2 The Invariance Measure Density Function 86

5.2.3 Invariance Space: Combining Invariance Measure Densities . . . 91

5.2.4 Discrete Invariance Signatures 93

6 A Neural Network for Computing Invariance Signatures 95

6.1 The Invariance Signature Neural Network Classi�er 95

6.1.1 Lie Vector Field Generation . 97

6.1.2 Local Orientation Extraction . 99

6.2 Calculation of the Local Measure of Consistency 103

6.3 Calculation of the Invariance Signature 104

6.3.1 The Binning Unit . 104

7 Character Recognition with Invariance Signature Networks 106

7.1 Retention of Su�cient Information . 106

7.2 Perfect Data . 106

7.2.1 Departures from Exact Invariance 106

7.2.2 The Data Set . 107

7.2.3 Selected Networks Applied to this Problem 108

7.2.4 Reduction of Data Dimensionality 108

7.2.5 Perfect and Network-Estimated Local Orientation 110

7.3 Optical Character Recognition . 114

7.3.1 The Data Set . 115

7.3.2 Selected Networks Employed for this Problem 116

7.3.3 Results for Traditional Neural Networks 117

7.3.4 Results for Invariance Signature Neural Network Classi�ers . . . 118

8 Conclusion 130

8.1 Using Weighting Functions to Constrain Networks 131

8.2 The Invariance Signature Neural Network Classi�er 132

8.3 Conclusion . 134

A Publications 135

B Introduction to the Xnet Neural Network Simulator 136

B.1 Familiarization with Xnet . 137

B.1.1 Introduction . 137

B.1.2 Starting Xnet . 137

B.1.3 Loading a Network . 137

B.1.4 Specifying an Input Vector For The Network 137

B.1.5 Training Sets . 140

B.1.6 The Training Control And Monitoring Window 141

CONTENTS vi

B.2 Creating Networks And Training Sets with Xnet 146

B.2.1 Introduction . 146

B.2.2 The XOR problem . 146

B.2.3 Creating A Network . 146

B.2.4 Creating a Training Set . 150

B.2.5 Training A Network To Solve The XOR Problem 152

B.3 Generalization and Repeatability . 155

B.3.1 Introduction . 155

B.3.2 Generalization . 156

B.3.3 Repeatability . 157

Bibliography 162

LIST OF FIGURES vii

List of Figures

1.1 A classical feed-forward network. The weighting function between all

pairs of levels is of type M.1. 3

4.1 Examples of Risers (left) and Non-risers (right) from the Plaut and Hin-

ton (1987) classi�cation problem. Signals were to be classi�ed as R or

NR as a function of their spectrogram shapes. These are the training

patterns used in the simulations in this thesis. 65

4.2 The MBNN used to solve the riser/non-riser classi�cation problem in

this study. Input (top) to second level connections are modeled by Ga-

bor (M.3)-type connections. Other connections are de�ned by M.1 con-

nections. 66

4.3 Response of MBNN to a riser. Note that the left-hand Gabor layer is

responding to the vertical component of the pattern. 68

4.4 Response of MBNN to a non-riser. 69

4.5 A MBNN that solves the Riser/Non-riser problem with only 22 parame-

ters. 72

4.6 Variation in training and test set errors and classi�cation performance

during training of a 22 parameter MBNN with simulated annealing. . . 75

4.7 Catastrophic failure during training of a 22 parameter MBNN with back-

propagation. 77

4.8 Over�tting of training data, resulting in diminished test set performance

during training of a 22 parameter MBNN with backpropagation. 78

5.1 In�nitesimal transformation leading to rotation. 83

5.2 Local Measure of Consistency as a function of arc length. 87

5.3 Square of side 2L. 90

5.4 Invariance Density Measure with respect to rotation for a square. . . . 91

5.5 Example of a sampled contour and its estimated tangents. 94

5.6 20 bin discrete Invariance Signatures for the contour in Figure 5.5. . . 94

6.1 Invariance Signature-based contour recognition system. 96

LIST OF FIGURES viii

6.2 �x module. 98

6.3 Coordinate matching module for node xi. Output 1 when: jxi � �xj < �. 99

6.4 Tangent estimation with varying window sizes, using the eigenvector

corresponding to the largest eigenvalue of the covariance matrix. 100

6.5 Tangents estimated with a window size of 35� 35. 101

6.6 Calculation of the dot product of the tangent estimate � and the vector

�eld corresponding to rotation, for the image point at coordinates (i; j). 103

6.7 Neural module which calculates the absolute value of its input. 104

6.8 Neural binning module. 105

7.1 Training set of canonical examples of unambiguous characters. 108

7.2 Test set of ideally shifted, rotated and re
ected letters. 109

7.3 Test patterns classi�ed correctly by the TNNs. 111

7.4 Classi�cation performance and errors of TNN 2 during training. 113

7.5 Test Patterns Misclassi�ed by the 5 Bin Invariance Signature Neural

Network Classi�ers, and the training examples as which they were in-

correctly classi�ed. 114

7.6 The characters scanned to generate the real data set. The box shows

the border of an A4 page (210mm � 297mm) so that the size of the

original characters may be judged. The dashed line shown the partition

into training and test data. 121

7.7 Training set of thinned, scanned characters (Part 1). 122

7.8 Training set of thinned, scanned characters (Part 2). 123

7.9 Test set of thinned, scanned characters (Part 1). 124

7.10 Test set of thinned, scanned characters (Part 2). 125

7.11 Tangents estimated for training examples of the letter \a". 126

7.12 5 bin Invariance Signatures for training examples of the letter \a". . . . 127

7.13 Tangents estimated for training examples of the letter \x". 128

7.14 5 bin Invariance Signatures for training examples of the letter \x". . . . 129

B.1 Xnet main window on startup. 138

B.2 Xnet �le load dialog box. 139

B.3 Xnet network \ab.net". 139

B.4 Window for specifying a vector in Xnet. 140

B.5 Input and output vectors as displayed in the Xnet main window. . . . 141

B.6 Window for creating, viewing or editing a training set. 142

B.7 Window for training a network. 143

B.8 Xnet window for specifying network dimensions. 147

B.9 Xnet two layer XOR network (still unconnected). 148

B.10 Xnet window for specifying the way layers should be connected. 149

LIST OF FIGURES ix

B.11 Training patterns for the XOR problem. 151

B.12 The sigmoid function. 153

B.13 Example test patterns for network trained using \ab.pat". 157

B.14 Network used for classify patterns as a digit. 158

B.15 Training pattern for the digit \2". 159

B.16 Performance of networks trained on digit classi�cation data. 161

1. Introduction 1

Chapter 1

Introduction

1.1 Introduction

Many claims have been made concerning the importance of neural networks (NNs) as

a paradigm shift in modeling both nature and the central processes of Information

Technology including, most directly, Arti�cial Intelligence problem domains. To this

stage, NNs have been applied to many and varied areas of inquiry from the control of

chemical plants, through to pattern recognition, and many biological domains. Further,

most proponents do not claim that NNs literally correspond to what actually occurs

in the human brain, but there is a general belief of a loose correspondence between

the actual computational units used and the response properties of individual neurons.

Added to this, there is a belief that the inherent parallelism of NNs is consistent with

brain function and that the use of fundamental numerical computations, in contrast to

symbolic or declarative representations, is representative of the \hardware" of intelli-

gent behaviour. This thesis is not aimed at challenging these claims, but at considering

fundamental computational problems of NNs related to their usual representational

dimensionality and model adequacy. In particular, this thesis is concerned with the

problem of integrating domain- or task-speci�c knowledge into the very architecture of

NNs.

It is important to note that most past NN formulations have a few central features

in common. They are:

1. Problems are solved by the determination of weights or states in an extremely

high-dimensional state space.

2. Learning, parameter estimation, and information processing are all inherently

parallel.

3. No further constraints on the system are required, since the NN learns weights

which are necessary and su�cient to predict behaviour.

1.1 Introduction 2

This indicates that most applications of NNs are based upon the assumption that

solutions to problems can be obtained by using generic technologies which essentially

search high-dimensional state spaces, and so require no additional knowledge about the

system under analysis. Examples of this abound in the literature, where the input and

output level responses are de�ned by discrete nodes and their transducer functions,

and at least one hidden layer is introduced. Further, NNs usually employ Supervised

Learning which, in one sense, is a form of constraining the system and weight esti-

mation processes. However, it is usually \black-box" in so far as it, per se, makes no

assumptions about the processing characteristics and desired properties of the system

not explicit in the training samples. For example, most traditional NN approaches to

pattern recognition lack explicit shift, rotation and scale invariances, as the NNs are

not modeled with such characteristics in mind. If such invariances arise it is due to the

presence of appropriately shifted, rotated, or scaled example patterns in the training

data set.

The aim of this thesis is to formalize an emerging perspective to NNs [e.g Tebelski

and Waibel, 1990; Waibel, Jain, McNair, Saito, Hauptmann and Tebelski, 1991] which,

whilst retaining the essentials of the NN approach, enables explicit modeling of the

target system. This can result in dramatically improved generalization of classi�cation

performance to patterns not present in the training data, and representation in con-

siderably lower-dimensional state spaces. Perhaps most importantly, model-based NNs

can be constructed so that they are guaranteed to have responses which are invariant

under certain transformations of the input data. Such networks can be trained with

very much smaller training sets, since it is no longer necessary to provide examples of

transformed versions of the input prototypes. This, coupled with the reduction in the

dimensionality of the parameter space, means that training such model-based NNs is

often much less computationally-expensive than the traditional alternative.

To attain these goals we �rst de�ne the classical formulation, compare it to past

technologies, and then develop the model-based formulation.

1.1.1 The Classical Feed-forward Neural Network

For a classical feed-forward NN, the input xj to a given \neuron", j, is de�ned by

xj =
X
i

yiwij (1.1)

and the output is de�ned by the logistic function

y =
1

1 + e�x
: (1.2)

1.1 Introduction 3

This process is implemented in NNs with at least three layers: an input layer, and

output layer and one or more hidden layers. These are connected in the form of a feed-

forward architecture, as shown in Figure 1.1 (as, for example, employed by Plaut and

Hinton (1987)). In classi�cation or recognition problems, the input layer is de�ned by

an array of nodes which constitute a sampled version of the input signal. The output

layer is de�ned by a set of nodes each corresponding to a class, pattern type, or category.

Connections fwijg between nodes are usually restricted to layers above and below a

given layer (see Figure 1.1). For a 3-layer NN with 100, 20, and 10 nodes for the three

layers, respectively, this results in 100 � 20 + 20 � 10 = 2200 connections. Each such

connection has a weight to be estimated in accordance with the desired input-output

(I-O) characteristics (Equations 1.1 and 1.2 above).

Figure 1.1: A classical feed-forward network. The weighting function between all pairs
of levels is of type M.1.

For recognition or classi�cation problems using Supervised Learning, the NN is

trained to reproduce given outputs from known input examples as accurately as pos-

sible. That is, the learning problem is de�ned by estimating the fwijg such that a

given output error, or \cost", function E is minimized. The most commonly used cost

1.1 Introduction 4

function is the sum of the squares of the errors of the output nodes:

min
wij

(
E =

1

2

X
l

X
c

(ylc � tlc)
2

)
(1.3)

where wij refers to all connection weights over all levels of the network, c indexes the

input-output exemplar pairs, l indexes the output nodes, ylc is the actual output, and

tlc is the desired output.

Though described in a variety of ways, learning techniques use either deterministic

gradient descent (in particular, backpropagation [Rumelhart, Hinton and Williams,

1986b; Rumelhart, Hinton and Williams, 1986a; Plaut and Hinton, 1987] or stochastic

relaxation methods [e.g. Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 1953;

Kirkpatrick, Jr. and Vecchi, 1983; Aarts and Korst, 1989] to �nd a set of weights (a

state of the network) that satis�es Equation 1.3. Solution or convergence times can be

improved with various acceleration techniques [e.g. Fahlman, 1988].

We are not so much concerned with these search techniques but, rather, the de�ni-

tion of the state space being searched. The state space dimensionality is very high since

it is de�ned by the total number of independent connection weights, which here includes

every connection. Consequently, there are likely to be many local minima available to

the solution technique that satisfy Equation 1.3 for the training examples, but do not

characterize the problem in general. The problems associated with search time (number

of iterations for convergence, etc.) are also signi�cant. Further, under the classical NN

perspective, no further constraints are added to such estimation problems as that would

challenge the idea that relations and rules can be \discovered" automatically through

the minimization or search for global minima of Equation 1.3. Here, we propose to

retain the notion that states can indeed be discovered by the learning procedure, but

to constrain the search procedure by modeling the network to explicitly include our

knowledge of the important features of the data, or desired invariant properties.

This modeling can take a variety of forms. The network is frequently divided into

a number of modules. These modules can be designed to perform component sub-tasks

of the overall classi�cation problem. Within a module, the weights may be constrained

in some way: some weights may be set by hand; others may be constrained by a

functional relationship; the module may be trained to perform a mapping independent

of the classi�cation training data. First, however, this view must be put in perspective.

To this end, we will �rst relate the parameter estimation problem in NNs to similar

problems in Signal Processing and Principal Components Analysis.

1.1 Introduction 5

1.1.2 A Matrix View of Neural Networks

We �rst note that, for a given set of connections, Equations 1.1 and 1.2 can be written

in matrix form as:

Xn = f fWYmg (1.4)

where f corresponds to the logistic nonlinear transducer (Equation 1.2), W to the

connection matrix of size n �m (for m \source" and n \destination" nodes), and X

and Y to the source and destination vectors corresponding to the pair-wise NN node

layers. This form points to the essential idea that the
ow of information from one

level to the next corresponds to a transformation, de�ned by the connection matrix,

which mapsm-dimensional signals into n-dimensional ones, where, usually, n < m. The

nonlinear transducer is used to map input values monotonically to the range (0; 1). The

net e�ect is that the NN procedure endeavours to discover a mapping which satis�es

an overt constraint like least squares (Equation 1.3) or others.

Consequently, the best form ofW is that of an orthogonal mapping of rank equal to

the true dimensionality of the input - as measured, for example, by the rank of the input

signal correlation matrix. Hidden units (units in neither the input nor output layers)

correspond to components of the eigenstructure in the mappings, albeit constrained by

the optimization goal. Except for the nonlinear transducer function, the use of hidden

units in NNs is a way of determining the eigenstructure, or principal components, of

the data. There must be at least as many hidden units (spread throughout the hidden

layers) as there are non-zero eigenvalues in the input data correlation matrix, since it

is necessary to span a vector space of the same dimensionality as the signal samples.

The hidden units, by de�nition, extract the important features in the signals which, in

more traditional signal processing, are extracted through the eigenvectors of the signal

autocorrelation or autocovariance matrices [Ade, 1983; Ahmed and Rao, 1975].

Since many applications of NNs lie in the area of classi�cation, it is interesting to

note that, when the �nal output layer of such a cascaded NN is a set of nodes corre-

sponding to classes or categories, we can interpret the system as a form of Discriminant

Function Analysis. The Discriminant Analysis model is based upon the determination

of decision hyperplanes which lie between sample class means and which maximize the

between-class and minimize the within-class variance from their projections onto such

planes. Discriminant functions are linear equations of the form:

z =

mX
i=1

aiyi + a0 (1.5)

and class membership is determined by the value of the function. For example, for a

two-class classi�cation problem, class membership is determined by the sign of z. For

1.1 Introduction 6

the n-class problem Equation 1.5 generalizes to the matrix form:

Z = DY (1.6)

where the n-class vector Z determines the weights associated with the data, Y , from

each of the classes. D corresponds to the set of discriminant function coe�cients

which de�ne each class. The crucial di�erence between NNs and classical Discriminant

Function Analysis is that the decision boundries of NNs are non-linear, due to the

transducer f .

Similar formulations for classi�cation have occurred in the Pattern Recognition

literature where, for example, the Least Squares Minimum Distance Classi�er [Ahmed

and Rao, 1975] attempts to �nd a mapping, in matrix form, which transforms samples

in feature space into points in \decision space" (whose dimensionality corresponds to

the number of classes) and satis�es the constraint that samples from the same class

should be mapped as close as possible to each other, and as far away as possible from

other class samples, in decision space.

However, NNs di�er from these well-known past techniques, even in their traditional

form, by binding the representation and processing characteristics together. Although

all these techniques have similar aims and structures, the NN formulation integrates

the processing characteristics with the decision processes in one network, which is

represented, in general, by a set of cascaded transformations. The use of nonlinear

transducers and layers of di�ering sizes has the disadvantage that analytic solutions

are di�cult, particularly since the dimensionality of the representation is of high order,

but permits the network to distinguish between classes which are not linearly separable.

Our aim is to preserve this binding of process with representation (feature space),

but to extend the NN philosophy to include more explicit constraints on the network

geometry and connection weights. The resulting systems behave similarly to traditional

NNs, but have two main advantages. First, it is possible to construct networks that

are constrained to respond to features of the input data that are known a priori to

characterize the task or to have desired invariances, rather than hoping that the training

data will cause the optimization technique to �nd a set of weights with these properties.

Secondly, this allows the dimensionality of the system to be reduced, which can reduce

the chance of �nding a local minimum that characterizes the training data but not the

general task. We call this extension Model-Based Neural Networks (MBNN).

The use of MBNNs allows a network to be constructed in which the supervisor's

knowledge of the task to be performed is used to specify, partially or completely, the

roles of some hidden units, or of whole hidden layers or modules, in advance. Thus the

supervisor's knowledge of which features of the training data are signi�cant for the task

is incorporated into the network geometry and connection weighting functions, serving

1.1 Introduction 7

as a constraint on the state space searched.

In this thesis, the aim is to demonstrate the utility of the MBNN approach for the

speci�c problem of invariant pattern recognition. To situate this work, a review of

existing general techniques for invariant pattern recognition is presented in Chapter 2,

and of previous neural network-based approaches in Chapter 3. Later chapters present

a variety of di�erent forms of MBNN, and demonstrate their utility on a range of

invariant pattern recognition problems, both real and synthetic.

Chapter 5 introduces a new invariant feature of two-dimensional contours, the In-

variance Signature. It is shown that a MBNN can be constructed which calculates this

(multi-dimensional) feature. This MBNN can be equipped with a classi�cation module

which uses the Invariance Signature as the basis for classi�cation. Chapter 7 demon-

strates that such Invariance Signature-based MBNNs can be employed successfully for

shift-, rotation- and scale-invariant optical character recognition.

2. General Methods for Invariant Pattern Recognition 8

Chapter 2

General Methods for Invariant

Pattern Recognition

The ability to perceive the permanent features of the visual environment is something

which humans take for granted. Indeed, it is hard to imagine a world in which we could

not. We do not even notice that we recognize objects and patterns independently of

changes in lighting conditions, shifts of the object or observer, or changes in orientation

and scale. [Gibson, 1966]1 stated this rather well:

It can be shown that the easily measured variables of stimulus energy, the

intensity of light, sound, odor, and touch, for example, vary from place to place and

from time to time as the individual goes about his business in the environment. The

stimulation of receptors and the presumed sensations, therefore, are variable and

changing in the extreme, unless they are experimentally controlled in a laboratory.

The unanswered question of sense perception is how an observer, animal or human,

can obtain constant perceptions in everyday life on the basis of these continually

changing sensations. For the fact is that animals and men do perceive and respond

to the permanent features of the environment as well as to the changes in it.

Besides the changes in stimuli from place to place and from time to time, it can

also be shown that certain higher-order variables of stimulus energy { ratios and

proportions, for example { do not change. They remain invariant with movements

of the observer and with changes in the intensity of stimulation. And it will be

shown that these invariants of the energy
ux at the receptors of an organism

correspond to the permanent properties of the environment.

The active observer gets invariant perceptions despite varying sensations. He

perceives a constant object by vision despite changing sensations of light; he per-

ceives a constant object by feel despite changing sensations of pressure; he perceives

the same source of sound despite changing sensations of loudness in his ears. The

hypothesis is that constant perception depends on the ability of the individual to

1quote taken from [Wechsler, 1990, p. 96].

2.1 Integral Transforms 9

detect the invariants, and that he ordinarily pays no attention whatever to the
ux

of changing sensations.

In this thesis we are concerned with only a small subset of the problems outlined above:

the invariant perception of two-dimensional patterns under shift, rotation and scaling

in the plane. This corresponds to the ability of humans to recognize patterns such

as typed or handwritten characters independently of their size, orientation or position,

which they do unthinkingly when reading a document such as an architectural drawing.

An image in the Cartesian (x; y) domain may be de�ned as a function f : R2 ! R,

f(x; y) = z, where z is the intensity of the image at coordinates (x; y). The invari-

ant pattern recognition problem is to recognize images as being in some sense \the

same" even though they have undergone a variety of allowed transformations. In two-

dimensional pattern recognition, one typically desires invariance with respect to a com-

bination of some or all of the shift, rotation and scale transformations.

A transformation may be denoted by Ta, where a is a vector of parameters specifying

the transformation. The deformed image is denoted by fTa = f (Tax; Tay). If the image

is not invariant under the action of the transformation, then in general fTa 6= fT
a
0 if

a 6= a0. The problem is thus to �nd a means of identifying f and fTa as instances of

the same image.

Many di�erent approaches to this problem have been used in computer vision, and

more speci�cally in the application of neural networks to invariant pattern recognition.

Some involve �nding representations of the image in spaces other than the natural

(x; y) space such that the representation in the new space is invariant under the desired

transformations. Others search for speci�c features in the image which de�ne \parts",

and then seek invariant relationships between these parts. Still others �t analytic curves

to parts of the image, and use algebraic or di�erential invariants of the parameters of

these curves. In this chapter an attempt will be made to review these approaches, and

to identify their strengths and weaknesses.

2.1 Integral Transforms

The most general form of an integral transform of an image f(x; y) is

O [f(x; y)] = F (u; v) =

ZZ
R2

f(x; y)K(u; v;x; y)dxdy; (2.1)

where K(u; v;x; y) is the kernel of the transform, and F (u; v) is the representation of

the image in the transform domain (u; v). This operation is also frequently described

as �ltering the signal f(x; y). K(u; v;x; y) is the point spread function of the �lter, and

F (u; v) is the �ltered signal.

2.1 Integral Transforms 10

Integral transforms are useful for invariant pattern recognition if it is possible to

choose kernels so that the transformed images are invariant (or have invariant compo-

nents) under some speci�ed transformations.

It is frequently the case that integral transforms used in invariant pattern recogni-

tion have two components:

� one that is invariant under the action of some transformation

� one that encodes the transformation with respect to some origin.

Invariant matching can be achieved using the �rst component, while the second can be

used to recover the transformation. If the transformation can be inverted to recover the

original image, then the representation is unique. If the invariant component is unique

up to the speci�ed transformations, then the representation can be called \invariant

in the strong sense". Invariant, but not unique, representations can be said to be

\invariant in the weak sense" [Ferraro and Caelli, 1994].

These two components are frequently the amplitude and phase spectra of the com-

plex transform of the image.2 The transform may be written as

O [f(x; y)] = A (u; v) e�i�(u;v): (2.2)

Considering a one-parameter transformation Ta, the conditions for strong invariance

can be met if

O [fTa(x; y)] = A (u; v) e�i[�(u;v)+ua]; (2.3)

since the amplitude spectrum A is invariant under the transformation Ta (i.e. it does

not depend on a), and the parameter a of the transformation can be recovered from

the phase spectrum. The only further requirement is that A(u; v) is unique for each

image.

There are limitations on the construction of strongly-invariant integral transforms,

which will be discussed in the following matter. Whether strongly-invariant representa-

tions are necessary, or even desirable, is a moot point, especially since in many pattern

recognition tasks one wishes to classify a pattern as a member of a class, rather than

to recognize uniquely each individual pattern.

2Throughout this thesis, the symbol i will be used to denote +
p�1, except when it appears as a

subscript, where it indicates an indexing variable.

2.1 Integral Transforms 11

2.1.1 The Fourier Transform

Consider a one-dimensional function f(x). Its Fourier transform is

F (u) =

Z 1

�1
f(x)e�iuxdx: (2.4)

We denote the operation of taking the Fourier transform by the operator F , so that

we can write F (u) = Ff(x). Now consider a version of the function f which is

transformed by the one-parameter translation Ta speci�ed by a, fTa(x) = f(x � a).

Taking the Fourier transform of fTa(x), we obtain

FfTa(x) =

Z 1

�1
f(x� a)e�iuxdx: (2.5)

Changing variables to x0 = x� a,

FfTa(x) =

Z 1

�1
f(x0)e�iu(x

0+a)dx0

= e�iua
Z 1

�1
f(x0)e�iux

0
dx0

= e�iuaFf(x):

(2.6)

Thus we see that a shift in the spatial domain produces only a phase-shift in the complex

Fourier frequency domain. Taking the magnitudes of the transforms, we have

jFfTa(x)j = jFf(x)j : (2.7)

The Fourier transform thus has two important properties:

� The magnitude of the Fourier transform is invariant under shifts in the spatial

domain.3

� The shift a can be recovered, as it is encoded in the phase.

The Fourier transform is thus strongly-invariant with respect to shifts. These properties

extend to multidimensional Fourier transforms [Rosenfeld and Kak, 1982], and form

the basis of many invariant pattern recognition techniques [for example, Altmann and

Reitb�ock, 1984; Lin and Brandt, 1993; Caelli and Liu, 1988; Ferraro and Caelli, 1988;

Ferraro and Caelli, 1994; Rubinstein, Segman and Zeevi, 1991; Segman, Rubinstein and

Zeevi, 1992].

3The amplitude of the power spectrum is thus invariant. Since the Fraunhofer (far-�eld) di�raction
pattern of an aperture is just its two-dimensional Fourier transform, and the intensity of light corre-
sponds to its power, a marvelous demonstration of this invariance can be carried out with a laser, lenses
and an optical bench.

2.1 Integral Transforms 12

2.1.2 The Fourier-Mellin Transform

The Mellin4 transform of a function f(x) de�ned over the positive reals is the complex

function M(s), where

M(s) =

Z 1

0
f(x)xs�1dx: (2.8)

The Mellin transform of a function is closely related to its Fourier transform, and this

is important for its application to invariant pattern recognition. If we change variables

in Equation 2.8 to

x0 =
� ln(x)

i
; (2.9)

we obtain

M(s) = �i
Z 1

�1
f(e�ix

0
)e�isx

0
dx0: (2.10)

Equation 2.10 shows that the Mellin transform of a function over the positive reals is,

up to a multiplicative constant, just the Fourier transform of the function after the

coordinate has been logarithmically-distorted. This means that the magnitude of the

Mellin transform will be invariant under shifts in the logarithmically-distorted domain.

To see the utility of this property for invariant pattern recognition, consider a

representation of an image in polar coordinates: r 2 [0;1) and � 2 [0; 2�). The

domain of r makes it a suitable candidate for the application of the Mellin transform.

Thus, we change variables to � = � ln(r)
i . We know that the magnitude of the Mellin

transform will be invariant under transformations Ta of the image such that Ta� = �+�,

where � is some constant.

Such a transformation is a scaling of the image by some positive constant �. We

see that

Tar = �r; (2.11)

so that

Ta� =
� ln(�r)

i

=
� (ln(r) + ln(�))

i

= �+ �

(2.12)

4Hjalmar Mellin, 1854-1933.

2.1 Integral Transforms 13

where � = � ln(�)
i . Thus the magnitude of the Mellin transform of the radial coordinate

of the image is invariant under scaling of the image.

We observe that a rotation of image by an angle � corresponds to a shift in the

angular coordinate �:

�0 = � + �: (2.13)

Thus the magnitude of the Fourier transform of the angular coordinate will be invariant

under rotations of the image. The image representation given jointly by the Mellin

transform of the radial coordinate and the Fourier transform of the angular coordinate

is thus invariant under rotation and scaling of the image. This is the Fourier-Mellin

transform, which has been widely employed for rotation- and scale-invariant pattern

recognition.

Biological Instances of Log-Polar Mapping

The notion of changing a scaling to a shift by a logarithmic transformation of the

coordinates occurs in many areas. In fact, the log-polar coordinate system described

above seems to have a biological analogue. Altmann and Reitb�ock (1984, p. 46) say

that

The principle of logarithmic mapping seems to play a role in biological sensory

systems too. In the simian visual system, as well as in the visual system of the

cat, the mapping of the central 20� { 30� of retinal space onto area 17 of the visual

cortex approximates a polar coordinate transformation together with a logarithmic

distortion of the r-axis.

Since biological systems can shift objects to the centre of the �eld of view by move-

ment of the eyes, it seems logical that a mapping that facilitates scale and rotation

invariant recognition would be most useful. This is not to say that biological systems

also compute Fourier transforms of these representations. Other methods can take ad-

vantage of representations in which transformations are reduced to shifts, as will be

discussed in x2.3.

Other Invariances Using the Fourier and Mellin Transforms

We have seen above that a scale- and rotation-invariant representation of an image can

be obtained by taking the Mellin transform of its radial coordinate and the Fourier

transform of its angular coordinate. By combining these transforms in other ways, it is

possible to obtain representations of images which are invariant under other transfor-

mations. As an example, we will consider Altmann and Reitb�ock (1984), who obtain

a scale- and shift-invariant representation by taking the absolute value of the Mellin

transform of the normalized Fourier amplitude spectrum of an image.

2.1 Integral Transforms 14

We have seen that the Fourier amplitude spectrum is shift-invariant. It is easy to

show that a coordinate scaling in the image domain (x0 = �x) produces a coordinate

scaling5 and a change in magnitude in the Fourier domain. The magnitude change

can be removed by normalizing the amplitude spectrum by its magnitude at u = 0.

This normalized Fourier amplitude spectrum is thus shift-invariant, and changes only

in scale when the image is scaled. The Mellin transform of this will thus be invariant

under both shifts and scalings of the image.

It is important to note that, since the Fourier phase spectrum is discarded and the

amplitude is normalized, this representation is not unique, and therefore cannot be

inverted. It thus does not meet the criteria for strong invariance. Nevertheless, Alt-

mann and Reitb�ock (1984) show that it can still be a useful representation. Whatever

the properties of the exact, continuous transform derived in theory, these will not be

preserved in a discrete digital implementation. Exact invariance is not preserved due

to sampling and border e�ects, so strong invariance can never be achieved in a discrete

system. This is a limitation common to all digital invariant pattern matching methods.

Altmann and Reitb�ock (1984) derive criteria for the preservation of \essential in-

formation" in the discrete Fourier transform of an image. For an N � N image, the

total object size should be nt . N=4, and the smallest permissible detail size is nd & 4,

measured in pixels. Of course, even once suitable images have been obtained, and the

invariant representations computed, the problem of matching these representations to

those of the template patterns remains.

2.1.3 Canonical Coordinates

We have seen above that the notion of transforming a pattern into a space in which

the action of a transformation Ta reduces to a shift along a coordinate axis is useful for

invariant pattern recognition. Indeed, it turns out that this notion can be generalized

into a scheme for computing the kernel K(u; v;x; y) of an integral transform which will

map an image into a space in which speci�ed transformations are reduced to shifts,

and which satis�es the strong invariance condition. This is possible if we consider

the transformations of the image to be Lie transformation groups.6 This is not overly

restrictive, as most transformations of interest for (especially two-dimensional) invariant

pattern recognition (e.g. shift, rotation and scaling) are Lie transformation groups. It

will be seen that the coordinates in which the transformations reduce to shifts are the

canonical coordinates of the generators of the transformation groups.

This formalism was introduced by Ferraro and Caelli (1988), and independently by

Rubinstein et al. (1991). The results are extended, developed and applied in Segman

et al. (1992) and Ferraro and Caelli (1994). The development presented here is an

5Dilations in the image domain become contractions in the frequency domain, and vice versa.
6The theory of Lie transformation groups is recapitulated in Chapter 5.

2.1 Integral Transforms 15

amalgam of these papers. We have seen that the conditions for strong invariance with

respect to a transformation Ta, as given by Equation 2.3, can be satis�ed if we �nd

a change of coordinates (x; y) ! (�; �) such that Ta becomes eTa, a shift, in the new

coordinate system (�; �).

Canonical Coordinates for a One-Parameter Transformation

Consider a one-parameter Lie Transformation Group Ta speci�ed by

x0 = � (x; y; a)

y0 = � (x; y; a) :
(2.14)

Let LT be the generator of T in the original (x; y) coordinates:

LT = � (x; y)
@

@x
+ � (x; y)

@

@y
: (2.15)

The action of Ta in the new coordinates is speci�ed by

�0 = � (�(x; y; a); �(x; y; a)) = �� (�; �; a)

�0 = � (�(x; y; a); �(x; y; a)) = �� (�; �; a) ;
(2.16)

and the new generator is

fLT =

�
�
@�

@x
+ �

@�

@y

�
@

@�
+

�
�
@�

@x
+ �

@�

@y

�
@

@�
: (2.17)

In order to meet the strong invariance condition, we require that eG be a shift in the

new coordinates:

�0 = � + a

�0 = �:
(2.18)

The generator of the transformation corresponding to this shift along the �-axis is

fLT =
@

@�
: (2.19)

Equation 2.17 thus leads to the equations

�(x; y)
@�

@x
+ �(x; y)

@�

@y
= 1

�(x; y)
@�

@x
+ �(x; y)

@�

@y
= 0:

(2.20)

2.1 Integral Transforms 16

The new coordinates (�; �) speci�ed by Equations 2.20 are called the canonical co-

ordinates corresponding to the transformation Ta. It is well-known that this system

of partial di�erential equations has an in�nite number of solutions [see Rubinstein

et al., 1991].

To apply this result to the derivation of a kernel for an integral transform, we recall

that the Fourier transform satis�es the strong invariance condition with respect to

along-axis shifts in its coordinate system. We now show how to combine the solutions

to Equation 2.20 with the normal two-dimensional Fourier transform to �nd a new

invariance kernel. Let ef(�; �) be a function de�ned on R2 . Its two-dimensional Fourier

transform is

eF (u; v) = ZZ
R2

ei(u�+v�) ef(�; �)d�d�: (2.21)

The transformation Ta changes ef according to efTa(�; �) = ef(� + a; �). We know from

Equation 2.6, therefore, that

eFTa(u; v) = e�iua eF (u; v): (2.22)

Changing back to the original coordinates in Equation 2.21, we obtain

eF (u; v)[f] = ZZ
R2

ei(u�(x;y)+v�(x;y))J(x; y)f(x; y)dxdy

= e�iua eF (u; v)[fTa];
(2.23)

where

J(x; y) = det

"
@�
@x

@�
@y

@�
@x

@�
@y

#
(2.24)

is the Jacobian of the change of coordinates. Thus we have found the kernel

K(u; v;x; y) = ei(u�(x;y)+v�(x;y))J(x; y) (2.25)

which satis�es the strong invariance conditions of Equation 2.3. Since Equations 2.20

have an in�nite number of solutions, there are in�nitely many invariance kernels for

the one-parameter group G. This allows a particular kernel to be chosen so that it is

convenient from a computational point of view.

2.1 Integral Transforms 17

Canonical Coordinates for Two Transformations

The method above can be extended to �nd canonical coordinates for two-parameter

Lie transformation groups.7 Unlike the one-parameter case, in which in�nitely many

kernels giving integral transforms satisfying the strong invariance conditions could be

found, in the two parameter case the method leads to unique coordinate changes, and to

the discovery of important restrictions on the existence of strongly-invariant transforms.

In order to satisfy the strong invariance condition simultaneously for two Lie trans-

formation groups Ta and Sb, we require a representation

O fSb [Taf(x; y)]g = A (u; v) ei�(u;v)+ua+vb: (2.26)

Again, the amplitude is invariant under the action of the transformations. The para-

meters the transformations are encoded orthogonally in shifts along the two axes in the

transformation domain, in the phase.

Ferraro and Caelli (1994) derive the conditions under which such a representation

exists, and specify the analytical form of the related integral transform kernel. IfLa and

Lb are the generators of Ta and Sb respectively, then (�; �) are canonical coordinates

for the transformations if

La� = 1; La� = 0;

Lb� = 0; Lb� = 1: (2.27)

The existence of such canonical coordinates is a su�cient condition for the existence

of a strongly-invariant representation, as a simple consequence of the properties of the

Fourier transform. It can also be shown that this condition is necessary [Ferraro and

Caelli, 1988]. Canonical coordinates only exist if La and Lb are linearly independent

and commute, that is, the Lie bracket vanishes:

[La;Lb] = LaLb �LbLa = 0: (2.28)

Moreover, the change of coordinates is one-to-one. Equation 2.28 allows one to de-

termine whether or not two transformations admit a strongly-invariant representation

via a straightforward calculation. For example, consider rotation and dilation. The

generator of the rotation transformation is

LR = �y @
@x

+ x
@

@y
(2.29)

7This analysis is extended to k-parameter groups in Segman et al. (1992).

2.1 Integral Transforms 18

and that for dilation is

LD = x
@

@x
+ y

@

@y
: (2.30)

By simple calculation,

LRLD = �y @
@x

�
x
@

@x
+ y

@

@y

�
+ x

@

@y

�
x
@

@x
+ y

@

@y

�
= �y @

@x
+ x

@

@y
:

(2.31)

Similarly,

LDLR = x
@

@x

�
�y @

@x
+ x

@

@y

�
+ y

@

@y

�
�y @

@x
+ x

@

@y

�
= x

@

@y
� y

@

@x
:

(2.32)

Trivially, the commutator is

[LR;LD] = 0: (2.33)

Since LR and LD are orthogonal, and we have just shown that they commute, there

exists a representation which is simultaneously strongly-invariant under both the cor-

responding transformations.

Conversely, consider LX = @
@x , corresponding to a translation along the x-axis. It

is easy to show that the commutator with the rotation transformation is

[LX ;LR] =
@

@y
6= 0: (2.34)

Similarly, [LX ;LD] 6= 0, and the same is clearly true for translations along the y-

axis. Thus Equation 2.28 allows us to show that there exists no representation which

is strongly-invariant under both rotation and shift, or under dilation and shift. This

refutes some claims in the literature [e.g. Casasent and Psaltis, 1976], and explains

why the representations of Altmann and Reitb�ock (1984) discussed above could not be

strongly-invariant.

The second bene�t of the canonical coordinates approach is that it provides an

equation for the kernel of the integral transform giving the strongly-invariant represen-

tation. This is of exactly the same form as that found above in Equation 2.25, with

the condition that the commutation and independence conditions above must now be

applied to the two transformation groups with respect to which (�; �) are canonical co-

ordinates. An excellent treatment of this, and a generalization to k-parameter groups,

2.2 Moments 19

is given by Segman et al. (1992).

We have seen that the canonical coordinates approach provides a formalism which

allows one to determine for which transformations a strongly-invariant integral trans-

form representation exists, and moreover, when it exists, it shows how to calculate its

kernel. These are important and powerful results.

2.2 Moments

Although calculated by integrating a kernel over an image, moments are not integral

transforms in the sense used above. An integral transform transforms an image into

a space of the same dimensionality as the image space (although the transform coor-

dinates are often complex). A moment of a given order (p + q), however, is a single

number. If one thinks of the \moment transform" of an image as the set of all its

moments, then one can consider the image to have been mapped into a discrete \mo-

ment space", indexed by p and q. In this sense moments can be considered as integral

transforms.

2.2.1 Geometrical Moments

The geometrical moment of order (p + q) of an continuous image function f(x; y) is

de�ned by:

mpq =

ZZ
R2

xpyqf(x; y)dxdy p; q = 0; 1; 2; : : : : (2.35)

For invariance purposes, it is more convenient to use the central moments, which are,

by de�nition, translation invariant:

�pq =

ZZ
R2

(x� �x)p(y � �y)qf(x; y)dxdy p; q = 0; 1; 2; : : : ; (2.36)

where the centroid of the image can be found using (�x; �y) = (m10=m00;m01=m00).

Altmann and Reitb�ock (1984) use �20 and �02 to estimate the factor by which an

image has been scaled. This is then used as the starting point for a cross-correlation-

based search for the image template in a reduced search space.

If the image is scaled according to x0 = �x, y0 = �y, a set of normalized central

moments can be de�ned by the equations

�0pq =
�pq

�p+q+2

�pq =
�0pq
�000

 ;
 =
p+ q

2
+ 1: (2.37)

2.2 Moments 20

These normalized central moments are scale invariant, and the f�pqg can be used to

de�ne a set of moment features which are invariant under shifts, rotations and scalings

of the image. Such a set [Khotanzad and Lu, 1990; Jain, 1989]8 is:

�1 = �20 + �02 (2.38a)

�2 = (�20 � �02)
2 + 4�211 (2.38b)

�3 = (�30 � 3�12)
2 + (3�21 � �03)

2 (2.38c)

�4 = (�30 + �12)
2 + (�21 + �03)

2 (2.38d)

�5 = (�30 � 3�12) (�30 + �12)
h
(�30 + �12)

2 � 3 (�21 + �03)
2
i

+ (3�21 � �03) (�21 + �03)
h
3 (�30 + �12)

2 � (�21 + �03)
2
i

(2.38e)

�6 = (�20 � �02)
h
(�30 + �12)

2 � (�21 + �03)
2
i
+ 4�11 (�30 + �12) (�03 + �21) (2.38f)

�7 = (3�21 � �03) (�30 + �12)
h
(�30 + �12)

2 � 3 (�21 + �03)
2
i

� (�30 � 3�21) (�12 + �03)
h
3 (�30 + �12)

2 � (�21 + �03)
2
i
: (2.38g)

Functions �1 through �6 are also invariant under re
ection, while �7 changes sign.

Wechsler (1990) notes that these moments are not fault-tolerant, and in general

produce disappointing results when used in pattern recognition experiments. The major

sources of deviation from theoretical invariance are discretization, and quantization

noise. They are also defeated by occlusion (as are many of the techniques discussed in

this chapter). It is possible to de�ne moments in polar coordinates too:

 kpq =

Z 1

0

Z �

��
rkg(r; �) cosp � sinq �d�dr: (2.39)

This allows a somewhat simpler expression of Equations 2.38 (and a very much simpler

proof of rotation invariance), but the drawbacks remain the same.

2.2.2 Zernike Moments

Geometrical moments, as de�ned by Equation 2.35, have the form of a projection of the

image f(x; y) onto the monomial xpyq. The basis set fxpyqg lacks some desirable fea-

tures, such as orthogonality. Consequently, the resultant geometrical moment features

are sub-optimal in terms of information redundancy [Khotanzad and Lu, 1990].

The Zernike polynomials fVnm(x; y)g are a set of complex polynomials which form

8Both sources cite Hu (1962) as the originator of these invariant moment combinations, but I have
not obtained that paper.

2.2 Moments 21

a complete orthogonal set over the interior of the unit circle:

Vnm(x; y) = Vnm(r; �) = Rnm(r)e
im�

(
n 2 J; n � 0

m 2 J; n� jmj even; jmj � n
(2.40)

where

Rnm(r) =

n�
jmj
2X

s=0

(�1)s[(n� s)!]rn�2s

s!
�
n+jmj

2 � s
�
!
�
n�jmj

2 � s
�
!
: (2.41)

These polynomials, unlike the monomials xpyq, are orthogonal, satisfyingZZ
x2+y2�1

V �nm(x; y)Vpq(x; y)dxdy =
�

n+ 1
�np�mq; (2.42)

where �ab is the usual Kronecker delta: �ab = 1 if a = b, and 0 otherwise.

The Zernike moments fAnmg of an image f(x; y) are the projections of the image

onto these basis functions. Expressed in polar coordinates,

Anm =
n+ 1

�

ZZ
r�1

f(r; �)V �nm(r; �)drd�: (2.43)

The orthogonality property means that the image can be reconstructed from these

moments (albeit an in�nite number of them). To compute the Zernike moments for a

digital image, the usual summation approximation of the integral is used. The centre

of the image is taken as the origin, and the pixel coordinates are scaled to the unit

circle. Pixels falling outside the unit circle are discarded [Khotanzad and Lu, 1990].

The Zernike moments provide rotation-invariant features. Consider the Zernike

moment Anm of an image, and A0nm, the Zernike moment of the image after rotation

through an angle �. Since the radial and angular components of the Zernike polynomials

are separable, it is trivial to note that

A0nm = Anme
�im�: (2.44)

This is reminiscent of the property of the Fourier transform discussed in x2.1.2. It

is clear then that the magnitudes of the Zernike moments are a set of rotationally-

invariant image features. This invariance is of course not exact in a digital setting due

to the usual problems of digitization and quantization noise, but Khotanzad and Lu

(1990) show �=� values9 of less than 7% for a range of Zernike moments for variously

rotated images of real characters.

9� is sample standard deviation, � is sample mean.

2.3 Matched Filtering and Convolution Techniques 22

Zernike moments are only rotation-invariant. To obtain shift and scale invariance,

the images must �rst be normalized with respect to these actions. This is done by using

the geometric moments of the raw image. In short, the normalized image is

f 0(x; y) = f
�
�x+

x

a
; �y +

y

a

�
(2.45)

where (�x; �y) = (m10=m00;m01=m00) is the image centroid, and a =
p
�=m00, where �

is a pre-determined image \size" (in pixels, for a binary image). This normalization

renders jA00j identical for all images, and jA11j � 0.

Khotanzad and Lu (1990) compared a number of classi�ers (multilayer perceptron

(MLP), Bayes, nearest-neighbour and minimum mean distance) using features based

on geometrical moments and Zernike moments for classifying arbitrarily transformed

uppercase Roman letters. They found that the neural network classi�er outperformed

all the others, especially in noisy cases. In agreement with Wechsler (1990), they found

that the geometric moment features became useless in the presence of noise, whereas the

Zernike moment features proved robust, although the higher order moments were more

sensitive. Perantonis and Lisboa (1992) compared a MLP trained with Zernike moment

features with a third-order network (see x3.4.3) for classifying hand-written numerals,

and found that the third-order network performed better. Higher-order neural networks

are, however, extremely expensive in space and computation time.

2.3 Matched Filtering and Convolution Techniques

The integral transform techniques discussed in x2.1 address the problem of �nding a

representation of an image which is invariant under certain transformations of the im-

age. The amplitude spectra obtained by these techniques, the invariant part of the

representation, are themselves images. The \Invariant" part of the phrase \Invari-

ant Pattern Recognition" has been addressed, but not yet the actual \Recognition".

Matched �ltering provides one answer to the recognition problem, and convolution, or

cross-correlation, techniques employ it to provide invariance as well.

2.3.1 Matched Filtering

One of the oldest techniques for pattern recognition is matched �ltering, descriptions

of which can be found in many standard reference books on computer vision [Rosenfeld

and Kak, 1982; Ballard and Brown, 1982]. Matched �ltering allows the computation of

Rfg , a measure of the similarity, between an image f(x; y) and a template g(x; y):

Rfg =

ZZ
f(x; y)g(x; y)dxdy; (2.46)

2.3 Matched Filtering and Convolution Techniques 23

where the integration is over the entire domains of x and y.

If the image and template are normalized so that they have the same total intensity

i.e.
RR

f2(x; y)dxdy =
RR

g2(x; y)dxdy, then Rfg is proportional to the interesting part

of the mean-squared distance between the images d2fg , since

d2fg =

ZZ
(f(x; y)� g(x; y))2dxdy

=

ZZ �
f2(x; y)� 2f(x; y)g(x; y) + g2(x; y)

�
dxdy

= 2

ZZ
f2(x; y)dxdy � 2Rfg :

(2.47)

The �rst term is constant due to the normalization, so it is clear that Rfg measures the

least-squared \similarity" between the image and the template: the larger Rfg is, the

closer the images are to identical. In a pattern recognition problem, for an image and

each of a set of possible templates, Rfg is computed and the image is assigned to the

class of the template for which Rfg is greatest. No classi�cation may be made if Rfg is

less than some threshold. It is known that this is the optimal technique for detecting

templates in the presence of additive white noise [Rosenfeld and Kak, 1982].

The matched �lter output is extremely sensitive to shifts or distortions of the image

and it is rarely used in this simple form. Nevertheless, it is a candidate for the in-place

matching of the amplitude spectra obtained using the integral transforms described in

x2.1.

2.3.2 Cross-correlation

A more common approach is to compute the cross-correlation Cfg(u; v) between the

image and a template, frequently with a template smaller than the image:

Cfg(u; v) =

ZZ
f(x; y)g(x + u; y + v)dxdy: (2.48)

Cfg(u; v) is again an \image", in which the intensity at coordinates (u; v) is just Rfg

calculated for the template shifted to those coordinates before the comparison with

f(x; y).

The presence of the template g(x; y) centred at (u; v) in the image f(x; y) can be

detected if Cfg(u; v) is greater than some threshold at that point. It is possible to detect

the presence of multiple instances of a template in the image using this technique.

Some version of cross-correlation plays a role in many invariant pattern recognition

techniques [Altmann and Reitb�ock, 1984; Caelli and Liu, 1988; Pintsov, 1989; Zetzsche

and Caelli, 1989; Lenz, 1990; Ohlsson, 1992; Lin and Brandt, 1993].

The use of cross-correlation with raw images and templates can be seen as a form of

2.3 Matched Filtering and Convolution Techniques 24

shift-invariant pattern recognition, since the template can be detected no matter where

it is in the image. It is perhaps not a true invariant pattern recognition technique, since

the image is e�ectively exhaustively-searched for the template. Computing Cfg(u; v) is

a very computationally-expensive process, especially if the template is large.

Pintsov (1989) uses the idea of \the cross-correlation function with respect to a

group of transformations". He views Equation 2.48 as cross-correlation with respect to

the group of translations of the plane:

x0 = x+ u;

y0 = y + v:
(2.49)

The cross-correlation process calculates Rfg between the image and all possible versions

of the template transformed by the group of translations. This notion can be extended

to other groups. In general, if a group G has n parameters, then locating instances

of a transformed template in an image by means of cross-correlation is the problem of

�nding the local maxima of the cross-correlation function in an n-dimensional space.

Pintsov (1989) shows how this approach leads directly to the Hough transform which is

discussed in detail in x2.5.1, and the closely-related Radon transform. It is noted that

the computational cost may be reduced if the transformation has known symmetries.

Extending the cross-correlation function to higher dimensions in this way as a means

of achieving invariance was discussed earlier by Caelli and Liu (1988, p. 207), but, as

they noted:

: : : if in the cross-correlation process, we explicitly include � and � as variables,

(by generating all possible templates) then the correlation process is invariant

with respect to rotation (�) and size change (�) as well as translation (x; y) in

a four dimensional space. However, the large amount of computation involved in

calculating the quadruple integration : : : prohibits the process from being practical,

even with the help of fast Fourier transform techniques.

Again, this is really just exhaustive search: all possible transformations of the

template are computed and compared with the image. Pintsov (1989) shows how

known symmetries of transformations can be used to reduce the space which must be

searched. Altmann and Reitb�ock (1984) give a method that reduces this cost by only

searching for the template in regions of the image (in their case actually a Fourier

transform of an image) which are likely to contain it. This is possible because they

are using a Fourier-Mellin technique in which scale changes are mapped to shifts in the

transform domain, and the normalized central second moments (see x2.2) are used to

estimate the scale factor.

2.3 Matched Filtering and Convolution Techniques 25

2.3.3 Filters Based On Multiple Templates

We have seen that computing a cross-correlation is equivalent to doing a matched

�ltering of the image with all possible transformed versions of a template. The com-

putational cost increases dramatically as the number of parameters of the allowed

transformation group increases, rendering this approach largely impractical. This cost

can be greatly reduced if it is necessary to compute the matched �lter output of the

image with only a small set of transformed patterns. This is possible, for instance, if

the number of possible transformations of the image is known a priori.

One approach is to use a �lter Hj which is a linear combination of the n allowed

transform states fij of the jth pattern:

Hj = a1jf1j + a2jf2j + � � �+ anjfnj; (2.50)

where the faijg are determined by some suitable constraints. In order to achieve

simultaneous invariance to translation, rotation and scaling, a very large number of

templates is still required, and �nding the faijg is again computationally-expensive.

This approach can be e�ective, however, if the template design procedure is based on

some optimization criteria.

Caelli and Liu (1988) address this problem by de�ning the \invariance surface"10

of an image. The coordinates of an pattern fj(x; y) may be rotated and scaled, giving

new coordinates (�; �) according to"
�

�

#
= �

"
cos � sin �

� sin � cos �

#"
x

y

#
: (2.51)

The invariance surface Ij(�; �) for pattern j is the maximum of the shift cross-correla-

tion function between the untransformed pattern and the rotated and scaled versions,

Ij(�; �) = max
u;v

8<:
ZZ
R2

fj(�; �)fj(x+ u; y + v)dxdy

9=; : (2.52)

The degree of invariance of a particular pattern with respect to the transformations

is given by Ij(�; �): the degree of invariance is measured by the di�erence between

the cross-correlation function and its maximum value, when computed between the

untransformed template and itself. The degree of invariance of a pattern depends on

the pattern structure: the letter \O" is much more rotationally-invariant than the

letter \T", and its Ij(1; �) curve is correspondingly smoother, and deviates less from
max
�
fIj(1; �)g. This indicates that the number of templates required to construct a

10This is a di�erent use of this term than that used later in this thesis.

2.4 Parts and Relationships 26

satisfactory �lter Hj depends of the invariance surface of pattern j. This number

can be determined by choosing a recognition threshold criterion C, and choosing to

generate a new template at each transformation state (�; �) where Ij(�; �) falls below

C. Clearly this will automatically take account of any symmetries of the patterns, and

of the transformations.

This technique allows a computationally feasible application of the matched �ltering

method to invariant pattern recognition. The number of templates used to construct the

�lter for each pattern depends on the invariance properties of the pattern with respect to

the transformations for which invariance is desired. Moreover, this can be controlled by

manipulating the threshold C, trading matching accuracy for computational expense.

Zetzsche and Caelli (1989) employ a related method. They use a 4-dimensional

pattern representation based on banks of �lters. The representation is encapsulated in

a set of �ltered images, each containing the original Cartesian coordinates of the image,

and indexed in terms of the orientation- and scale-speci�c �lters used to produce them.

This is based on transformations to a space in which rotations and scalings become

shifts, as discussed extensively above, and again claims biological inspiration. Rather

than �lters based on transformed target images, the �lters are in this case generic, based

on two-dimensional Gabor functions, which are discussed in Chapter 4. This is thus

not a direct matched �ltering technique, but cross-correlation is used for recognition of

the �lter outputs.

2.4 Parts and Relationships

In all the techniques discussed so far in this chapter, an attempt has been made to �nd

an invariant representation of the image as a whole, and to match images to images (or

transformed images) on a pixel-by-pixel basis. A di�erent approach to the invariant

pattern recognition problem is to view an image as a group of component parts, and

relationships between those parts. As a trivial example, if an image consists of two

straight lines, then the angle between those lines is invariant under shifts, rotations

and scalings of the image. The lines are the parts, and the angle between them is their

relationship. Matching is done between these abstracted properties of the image, rather

than between pixels. In more realistic examples, there is the sub-problem of (possibly

invariantly) recognizing the parts in the image, and extracting their relationships.

There is a large body of literature concerning the application of the parts and rela-

tionships approach to three-dimensional object recognition. Here we will consider only

a small sample of two-dimensional invariant pattern recognition applications. It should

be noted that the distinction between a \holistic" pattern recognition approach and the

use of parts and relationships is not as clear-cut as it might seem. Holistic approaches

depend implicitly on the constituent parts of the image, and their relationships.

2.4 Parts and Relationships 27

2.4.1 Sub-Graph Matching

Li (1992) addresses the problem of matching between an image and a model under

arbitrary translations, rotations and scale changes in noisy conditions. Only very simple

objects (or patterns) are considered, the parts being points or line segments. An image

can consist of only sub-parts of a model object, and there can be extra lines and points

in the image. Li (1992) calls his object representation an attributed relational structure

(ARS). An ARS consists of a set of nodes, their properties (unary relations), and binary

and ternary relations between them. The ARS is an invariant image representation,

because the node properties and relations are chosen to be invariant under arbitrary

2D geometric transformation. Possible choices for these invariant attributes include

curvature properties, relative angles and distance and area ratios.

It is apparent that, once parts and relationships have been extracted from an image,

the parts and relationships constitute a graph, with labeled nodes and edges. This is

true of all parts and relationships approaches to object or pattern recognition, whether

or not the attributes chosen are invariant. The greatest limitation of these techniques

is thus that recognition requires a solution of the sub-graph isomorphism problem,

which is known to be NP-complete [Ballard and Brown, 1982]. The challenge is thus to

�nd an algorithm that can obtain an acceptable solution in reasonable time. Explicit

search may be satisfactory for su�ciently small graphs. Another approach is relaxation

labeling, which is employed by Li (1992).

2.4.2 Deformable Templates

Less general, but related, are the deformable template techniques. Typically they are

used when the aim is to match a distorted version of a known model, for which the

possible distortions are limited and non-arbitrary. These conditions allow costs to be

assigned to various deformations, and constraints to be placed on the matching problem.

One advantage of these techniques is that they not only allow matching of distorted

templates, but allow the distortion to be recovered, and its cost to be estimated.

Chow and Li (1993) apply deformable template matching to the automatic detection

of features in front-view images of human faces. Domain knowledge, such that the

eyes are a horizontal pair of dark regions on a light surface, is used to provide initial

plausible estimates of feature locations, for features such as the eyebrows and mouth.

A generalized Hough transform is then used to locate the irises, modeled as circles.

These estimated iris positions are in turn used as a starting point for the application of

a deformable template, consisting of two parabolas, to �tting the eye boundaries. The

optimization method used is based on the simplex method, which allows the reduced

search space to be taken into account [Press, Teukolsky, Vetterling and Flannery, 1992].

A similar method is used to locate the mouth. Experiments with this system showed

2.5 Contour-Based Methods 28

that it was able to locate facial features satisfactorily in over 80% of test images.

Deformable template techniques share several features with the model-based meth-

ods developed in this thesis. The system designer's a priori knowledge of the domain of

possible patterns is used to constrain the search for features. This domain knowledge

is directly encoded in the system, rather than being abstracted from training images.

2.5 Contour-Based Methods

An important class of two-dimensional invariant pattern recognition techniques, espe-

cially in the context of this thesis, are those designed for the recognition of contours.

These contours may be extracted through some form of edge detection, or may be a

natural pattern representation, such as in character recognition. Broadly speaking,

approaches to contour recognition may be divided into two classes: those which rep-

resent the contour by a parameterized algebraic expression �tted to the image, and

those which treat a contour as a group of pixels. Contour recognition is of particular

interest because contours corresponding to object boundaries are frequently used in

three-dimensional object recognition, and also because there are many applications for

the application of machine pattern recognition to domains in which the patterns natu-

rally consist of line drawings (e.g. character recognition, circuit diagrams, engineering

drawings, etc.). Moreover, there is evidence that the human visual system applies a

contour-based approach to pattern recognition even when no contour actually exists in

the image: it interpolates an implied contour [Caelli, Preston and Howell, 1978].

2.5.1 The Hough Transform

Perhaps the simplest \contour-based" technique is the Hough transform, which is de-

scribed in standard computer vision references [e.g. Ballard and Brown, 1982]. Variants

of the Hough transform occur frequently in the invariant pattern recognition literature

[Pintsov, 1989; Chow and Li, 1993; Li and Roeder, 1994]. We have seen in x2.3.2 that

the Hough transform and its generalizations can be interpreted as cross-correlation

techniques, where the template is a parametric curve rather than an actual image. The

most basic Hough transform is that for detecting straight lines.

Consider an image in which the intensity I(x; y) at a point (x; y) is a measure of

that point's importance (typically the \strength" assigned to it by an edge detection

algorithm). All straight lines passing through (x; y) obey the equation y = mx+c. Each

individual line is represented by a point (m; c) in a two-dimensional parameter space.

The f(m; c)g corresponding to all possible lines passing through (x; y) form a line in

the parameter space. This parameter space is unbounded, so in practical applications,

2.5 Contour-Based Methods 29

the parameterization

x cos � + y sin � = r (2.53)

is usually used. This produces a sinusoid in (r; �) space for each point (x; y). The

parameter space can be divided into a number of bins, or accumulators, each corre-

sponding to a range of values of r and �. For each point (x; y), I(x; y) is added to the

bins corresponding to all the (r; �) satisfying Equation 2.53. As with cross-correlation,

a threshold can then be used to chose which bins have accumulated su�cient evidence

for the presence of a line.

The Hough transform in this form is usually thought of as a line detection algo-

rithm, rather than an invariant pattern recognition technique. It can, however, be

considered to be a method for recognizing a straight line segment invariant under shifts

and rotations.11 The use of the Hough transform for detecting more complex para-

meterized contours is more readily recognizable as invariant pattern recognition. The

circles (x�a)2+(y�b)2 = r2 can be detected in exactly the same way, this time with a

three-dimensional parameter space (a; b; r). This form of the Hough transform is used

by Chow and Li (1993), and, slightly modi�ed, by Li and Roeder (1994).

The Hough transform is thus a generalized matched �ltering technique for para-

meterized curves. It can be used to discover the set of parameters that best explain

the image data, given that the parametric form of the curve producing the data is a

priori known. Its disadvantage is that it is practically restricted to a reasonably small

set of template curves, since both the computation time and the size of the array of

bins increase exponentially with the number of parameters. Moreover, it is heavily

dependent on the quality of the edge detection which produces I(x; y).

2.5.2 Algebraic and Di�erential Invariants

Another approach to invariant contour matching involves calculating invariants of the

contour, and matching these. This o�ers the chance to avoid the computation time

and space expenses of methods such as cross-correlation or the Hough transform, in

which the contour is e�ectively matched against all possible transformed versions of

the template.

Such techniques are often employed when seeking three-dimensional projective in-

variants of contours, a more di�cult problem than invariance under the subset of a�ne

transformations in the plane discussed so far. The researchers involved in this work

are frequently interested in issues such as camera calibration, stereo matching or pho-

tometrics, rather than with invariant object (or pattern) recognition per se [Forsyth,

11The choice of threshold in
uences the scale invariance of this technique.

2.5 Contour-Based Methods 30

Mundy and Zisserman, 1992; Weiss, 1993b; Faugeras, 1993; Barrett, Gheen and Pay-

ton, 1993; Gros, 1993].

Functions of Contour Coe�cients

Algebraic invariants are well suited for use with algebraic contours: contours which can

be expressed by an implicit polynomial f(x; y) = 0. As an example we will consider the

family of contours known as conic sections. The general equation for a conic section is

f(x; y) = a11x
2 + a22y

2 + 2a12xy + 2a13x+ 2a23y + a33 = 0: (2.54)

If we de�ne the matrices

X =

264xy
1

375 A =

264a11 a12 a13

a12 a22 a23

a13 a23 a33

375 : (2.55)

Equation 2.54 can then be written succinctly in matrix form as

XTAX = 0: (2.56)

The shape of a particular conic is determined by the coe�cients faijg. Since A is a real

symmetric matrix, the coordinates can be transformed using a similarity transform so

that A is diagonal. This implies that properties of the matrix A which are invariant

under similarity transforms will be invariant descriptors of the shape of the conic under

translation and rotation. One such feature is the determinant D, another is the trace

T. Two invariant descriptions of the conic f(x; y) are thus

D =

�������
a11 a12 a13

a12 a22 a23

a13 a23 a33

������� T = a11 + a22 + a33: (2.57)

Further invariant properties ofA can be found.12 These functions of the polynomial

coe�cients can therefore be used for matching a transformed conic to its untransformed

template. This approach can be extended to higher dimensions (e.g. quartic surfaces),

and to other families of curves. The coe�cients must be obtained by �tting a polynomial

to the image data { in itself a far from trivial problem, and potentially computationally-

expensive. Clearly a high resolution image of the curve will be required if the coe�cients

are to be estimated su�ciently well to be useful for recognition, although Forsyth et al.

(1992, p. 43) say \For applications in model-based vision, it is far more important that

a representation be projectively invariant than that it be a good approximation." If

12For instance, any symmetric function of the eigenvalues.

2.5 Contour-Based Methods 31

the coe�cients can be determined su�ciently well, however, the matching process is

very cheap.

Cross-ratios

The techniques discussed in this section are often more applicable to the projec-

tive geometry appropriate in three-dimensional object recognition than in two-dimen-

sional shift, rotation and scale invariance. Projective transformations preserve neither

lengths, nor ratios of lengths. The ratio of two ratios of lengths, however, is invariant

[Wechsler, 1990]. Such a ratio is known as a cross-ratio. Since projective transforma-

tions are many-to-one, matching cross-ratios are a necessary, but not su�cient, condi-

tion for feature-matching. Cross-ratios are used in many recognition problems involving

projective geometry [e.g. Forsyth et al., 1992; Barrett et al., 1993; Vanderkooy, 1996].

An example of a possible cross-ratio that might be used comes from Vanderkooy

(1996). Consider the detection of four coplanar lines, A, B, C and D. Under a per-

spective projection, these lines will intersect at a single point: the vanishing point.13

The cross-ratio of the sines of the angles between these lines is:

[A;B;C;D] =
sin(\AC)

sin(\AD)
� sin(\BD)

sin(\BC)
: (2.58)

If the lines are in fact coplanar, this corresponds to an invariant structure. If the lines

are not coplanar, the cross-ratio will vary from view to view.

Note that this requires that the lines be labeled, so that the appropriate angles can

be identi�ed. This requires some prior point-matching. If this is not done, then the

technique faces a combinatorial explosion. The number of cross-ratios, C, that can be

calculated for N lines is

C =
N !

(N � 4)!4!
: (2.59)

Di�erential Invariants

Di�erential Invariants arise most naturally when the coordinates of points on a curve, x,

are expressed explicitly as a function of some local parameter t, x = x(t), rather than by

an implicit function such as that in Equation 2.54. The natural shape descriptors in such

a representation are the derivatives dnxi
dtn . These descriptors are local, since they depend

on the derivatives at a particular value of t, unlike the global descriptors derived from

the coe�cients of the implicit function in the case of algebraic invariants. A di�erential

invariant is a function of the dnxi
dtn which does not change under a transformation of the

coordinates x and the parameter t (or which changes in a limited way, which will be

13Lines can be extended to the vanishing point; they need not intersect in the actual image.

2.5 Contour-Based Methods 32

explained in the following matter) [Weiss, 1993a]. Various di�erential invariants have

been widely applied in computer vision: curvature, torsion and Gaussian curvature, for

instance, are all invariant under Euclidean transformations [Forsyth et al., 1992].

It is possible to characterize a curve using the di�erential equation to which the

curve is one of the possible solutions. The advantage of this approach is that some

constants are eliminated. Curves are represented parametrically, x = x(t), where x is

a point on the curve, expressed in homogeneous coordinates.

As a simple example, consider the second order linear di�erential equation

x00 = 0: (2.60)

The solutions to this equation constitute the family of all straight lines. Equation 2.60

is thus an invariant representation of straight lines { it is invariant with respect to the

gradient and y-intercept of the line (i.e. shift, rotation and scale).

Generalizing, any curve expressed in n-dimensional homogeneous coordinates sat-

is�es the linear di�erential equation [Weiss, 1993b]:

x(n) +

�
n

1

�
p1x

(n�1) +

�
n

2

�
p2x

(n�2) + � � �+ pnx = 0: (2.61)

It is clear that multiplying x by a constant matrixT will have no e�ect on Equation 2.61,

since T will factor out. The pi are thus invariant under the linear transformation T.

The solutions are curves in (n � 1)-dimensional space, determined up to projection.

The pi in Equation 2.61 are scalar functions of the parameter t. Projective invariants

can be de�ned in terms of these pi.

For plane curves in 3-space, the di�erential equation corresponding to Equation 2.61

is

x000 + 3p1x
00 + 3p2x

0 + p3x = 0: (2.62)

In order deal with coordinate scaling, it is necessary to de�ne semi-invariants, P2 and

P3, which are not invariant under changes in parameterization:

P2 = p2 � p21 � p01

P3 = p3 � 3p1p2 + 2p31 � p001: (2.63)

P2 and P3 are invariant under projection and coordinate scaling. We now need to �nd

quantities invariant under transformations of the curve parameter t. We may write this

transformation as t! ~t(t). Relative invariants of weight w are de�ned to be quantities

2.5 Contour-Based Methods 33

which transform as:

~�w =
1

(~t0)w
�w: (2.64)

Two such relative invariants can be found using the quantities de�ned in Equa-

tion 2.63:

�3 = P3 � 3

2
P 02

�8 = 6�3�
00
3 � 7(�03)

2 � 27P2�
2
3: (2.65)

Absolute invariants (w = 0) can be found by combining relative invariants. For plane

curves, an absolute invariant is �83=�
4
8. This approach can be extended to higher dimen-

sions.

One advantage of di�erential invariants is that they are complete { a small set of

invariants contains all the essential information about the curve. They are also local,

in that di�erential properties at one point determine the entire curve. This means that

di�erential invariants are invulnerable to occlusion.

Whilst mathematically elegant, this approach has one great disadvantage. Its appli-

cation to digital images requires the computation of extremely high-order derivatives

of the contour in the image (as high as the eighth). This process is well-known to

be error-prone. Moreover, these derivatives are raised to high powers, magnifying the

estimation error.

Weiss (1993b), noting that the method above is unreliable and hard to use in prac-

tice, de�nes some modi�ed semi-invariants which reduce the number of derivatives

required. He also introduces a �lter-based method for improving the accuracy of the

estimation of high derivatives. Nonetheless, the results presented are for noiseless syn-

thetic curves of very much higher resolution than those typically available for pattern

recognition.

3. Neural Network Approaches to Generalization and Invariance 34

Chapter 3

Neural Network Approaches to

Generalization and Invariance

In Chapter 2 several general methods for performing invariant pattern recognition were

described. In this chapter, we move from the general to the speci�c, and consider

in particular the application of arti�cial neural networks to the problem of invariant

pattern recognition. This will involve a clari�cation of the terms \generalization" and

\invariance"; both are frequently used in the neural networks literature, often as if they

described the same phenomenon: this is not the case.

From its earliest history, practitioners in the �eld of neural networks have been

interested in the pattern recognition problem. Perhaps this is due to the simple fact

that the input layer of an arti�cial neural network is such a seductive analogue of the

the biological retinal array of photoreceptors. This correspondence, coupled with the

amount of the cortex devoted to vision, has long made pattern recognition a favoured

area of inquiry for neural networks researchers. Indeed it could be argued that pattern

recognition has been the major application domain for arti�cial neural networks since

their invention, and some form of invariance has often been sought. The longevity

of this quest, and how little it has changed to this day, is exempli�ed by Pitts and

McCulloch (1947, p. 127), who, referring to biological nets, say:

Numerous nets, embodied in special nervous structures, serve to classify infor-

mation according to useful common characters. In vision they detect the equiv-

alence of apparitions related by similarity and congruence, like those of a single

physical thing seen from various places. : : : The equivalent apparitions in all cases

share a common �gure and de�ne a group of transformations that take the equiva-

lents into one another but preserve the �gure invariant. : : : We seek general meth-

ods for designing nervous nets which recognize �gures in such a way as to produce

the same output for every input belonging to the �gure.

Pitts and McCulloch (1947) were especially concerned with designing neural networks

35

which were consistent with what was known about actual mammalian cortical structure.

Nevertheless, their models for translation and dilation invariance have much in common

with more modern work.

In his seminal paper Rosenblatt (1958, p. 386) starts with the question of \the

capability of higher organisms for perceptual recognition, generalization, recall and

thinking", but segues seamlessly within two paragraphs to the \stored pattern", as

if the storage and recognition of patterns were such a natural way to consider these

problems that no explanation was necessary. Moreover, Rosenblatt uses a \photo-

perceptron" as his example, again emphasizing the fact that visual pattern recognition

has long been considered a prime application for neural networks. Rosenblatt's (1958,

p. 404) con�dence is exempli�ed by:

The question may well be raised at this point of where the perceptron's ca-

pabilities actually stop, We have seen that the system described is su�cient for

pattern recognition, associative learning, and such cognitive sets as are necessary

for selective attention and selective recall. The system appears to be potentially

capable of temporal pattern recognition, as well as spatial recognition, involving

any sensory modality or combination of modalities.

WhenMinsky and Papert (1969) showed this con�dence to be misplaced, it was done

in the context of pattern recognition. Their proofs of the limitations of perceptrons in

general were couched in the language of geometry: could �nite-order or diameter-lim-

ited perceptrons compute connectedness? Could they compute parity or convexivity?

Indeed they made explicit their interest in invariance and pattern recognition, saying

\we are adopting the mathematical viewpoint of Felix Klein: every interesting geomet-

rical property is an invariant of some transformation group" [Minsky and Papert, 1969,

p. 41].

Kohonen's (1972) quite general model for a linear associative memory was demon-

strated with character recognition examples. Amari (1977) also used pattern recogni-

tion as the problem domain for his more complex self-organizing associator, which ad-

dresses the association of non-orthogonal patterns which are a di�culty for correlation-

matrix-based associators.

Grossberg (1980), although addressing the general problem of the development of

internal representations of the environment through experience, uses geometric pattern-

matching as his example. This paper contains much of the theory, including the notion

of feedback-induced resonance between input patterns and stored prototypes, which

forms the basis of of his later Adaptive Resonance Theory (ART), the subject of many

papers [e.g. Carpenter and Grossberg, 1987; Carpenter and Grossberg, 1988].

Despite the activity mentioned above, the �eld of arti�cial neural network research

had in reality been dealt a severe blow by Minsky and Papert's (1969) critique. It was

the popularization of the backpropagation algorithm for training non-linear multilayer

3.1 Quantifying Generalization 36

perceptrons (MLPs) in the mid 1980s that sparked a new explosion of interest in the

�eld. It is the non-linearity of the MLPs that allows them to escape the limitations of

perceptrons demonstrated by Minsky and Papert (1969). Backpropagation, in reality

a fairly simple application of the chain rule, was independently discovered by several

researchers. It is its ingenious distributed implementation which makes it interesting,

and applicable to neural networks. In one of the in
uential early papers on back-

propagation, Rumelhart et al. (1986b) demonstrate its ability to solve \rather abstract

mathematical problems" [Rumelhart et al., 1986b, p. 631] such as parity and encoding.

When, however, they want a more realistic application they turn to a simple invariant

pattern recognition problem: discriminating between a \T" and a \C" independent of

translation and rotation.1

It should be clear that the history of arti�cial neural networks is inextricably bound

up with their application to pattern recognition. There is a very large number of papers

and books on this subject, and an attempt to survey them is beyond the scope of this

thesis. Excellent treatments exist, such as Bishop (1995). The remainder of this chapter

will thus address the application of neural networks to invariant pattern recognition.

The somewhat nebulous notion of generalization will also be addressed, since it is often

confounded with invariance. Invariance, in fact, is a particularly special case.

3.1 Quantifying Generalization

Since their earliest inception, many claims have been made about the ability of neural

networks to generalize. In the context of pattern classi�cation, this usually means that

the network is able to assign correct class labels to patterns that were not presented

to it during training. Class membership is usually to an extent subjective { whether,

for example, a given pattern is an instance of a particular letter of the alphabet is

an unsolved problem mathematically, and is in fact context-sensitive even for humans

[McGraw, 1992]. Generalization is, in its simplest form, due to the fact that neural

networks interpolate: small changes in the input usually produce small changes in the

output [Amari, 1990]. This, however, is a far from satisfactory de�nition of generaliza-

tion for mathematical analysis.

A network which performs true invariant pattern recognition is a quite di�erent

entity to one which simply interpolates in subjectively \sensible" ways. A true invariant

pattern recognition network has an output that is by de�nition invariant under the

application of certain transformations to the input layer. This property should ideally

be independent of the composition of any training data applied to the network. It

is possible to imagine a truly invariant network which does not generalize correctly

according to certain subjective criteria.

1A simple problem, since the characters used consisted of only �ve pixels.

3.1 Quantifying Generalization 37

It is important to note that many of the results and claims concerning the ability of

neural networks to generalize have been made for unstructured input data, frequently

in the context of generalization in the presence of noise. This makes plain the essential

di�erence between generalization and invariance: in the invariance case, new input

patterns belonging to the same class as a training pattern are produced by a completely

deterministic mathematical transformation; in many generalization studies they are

produced by random perturbations of the training pattern. Several of these approaches

to measuring and improving generalization will now be reviewed.

3.1.1 Hamming Distance

Amari (1990) considers the properties of correlation matrix associative memories

trained to associate two sets of independently randomly generated n-dimensional bipo-

lar vectors, fs�g and fq�g. The normalized Hamming distance between an input vector

s�i and a noisy version s�i
0
is

Ds�(s
�
i ; s

�
i
0
) =

1

2n

nX
i=1

���s�i � s�i
0
��� : (3.1)

Let the output of the network for an input vector x be TWx. The generalization ability

of the network may be measured by considering the distance Dq�(q
�
i ; TW s

�
i
0
). Amari's

analysis shows that the expected value of this distance is

Dq� = �

�
�1� 2Ds�p

r

�
; (3.2)

where

�(u) =

Z u

�1

1p
2�
e�v

2=2dv; (3.3)

and r is the ratio of the number of training examples to the input dimensionality. This

is an explicit expression of the ability of the network to generalize. It shows that the

degradation of performance is very graceful, with a catastrophic transition to Dq� � 1

at Ds� = 0:5. A similar analysis is given for recurrent autocorrelation associative

memories in the same paper.

It must be remembered, however that this is a statistical result, obtained for random

input and output vectors, and n su�ciently large for the central limit theorem to be

applied. Moreover, the Hamming distance is a totally inappropriate metric for pattern

similarity in the case of transformation invariance. A shifted pattern may have no pixels

in common with its prototype. Its normalized Hamming distance from its prototype is

thus 1, whereas its \shift invariance di�erence" is 0. Despite this, statistical measures

3.1 Quantifying Generalization 38

based on such metrics make up much of the literature on generalization, and are often

critically compared to invariance techniques.

3.1.2 Comparison with a Teacher Network

Another way to quantify generalization is to consider the output of a network which

is trained using the inputs and outputs of a \teacher" network with an identical ar-

chitecture [Krogh and Hertz, 1991]. Since the architectures are identical, it is known

that the \student" network is capable of emulating the teacher perfectly, given the

correct weights. Krogh and Hertz (1991) analyze the dynamics of the training of a

single linear neuron with p = �N of the 2N possible input-output pairs generated by a

teacher network. The inputs are generated randomly and independently. They de�ne

the generalization error F to be the squared di�erence between the student and teacher

outputs, averaged over all 2N possible binary inputs:

F =
1

N

NX
i=1

(ui �wi)
2; (3.4)

where u and w are the teacher and student weight vectors respectively. F varies

between 1 and 0 (perfect generalization) if the weight vectors are normalized to lengthp
N .

Krogh and Hertz (1991) devote much space to the analysis of F as a function of

time during training, F (t). For the purposes of this thesis, the asymptotic results at

in�nite time are those of interest, since we are concerned with the generalization ability

of trained networks. The result is:

lim
t!1

F (t) =

8<:1� � for � < 1,

0 for � � 1.
(3.5)

It may at �rst seem surprising that perfect generalization occurs when only the poten-

tially-tiny fraction N=2N of possible inputs are presented, but this is in fact entirely

unremarkable, since only N points are required to determine an (N � 1)-dimensional

hyperplane, which is all that is being done in this simple linear system.

Krogh and Hertz (1991) also investigate the e�ect of adding a weight decay term

(see x3.3.1) to the weight-update equation. Without a weight decay term, learning only

takes place in the subspace of the weight space spanned by the training input patterns.

If the initial weight vector is non-zero, components outside this subspace can cause

errors. The use of weight decay causes that part of the initial weight vector orthogonal

to the input pattern space to decay exponentially, thus eliminating this source of error.

3.1 Quantifying Generalization 39

Winther, Lautrup and Zhang (1995) also investigate generalization performance

where the target is de�ned by an unknown teacher network. They investigate a learn-

ing scheme which makes use of some prior knowledge to improve generalization per-

formance. They use a Bayesian approach, in which the prior information available is

Pr(DjV), the probability that the training dataset D was generated by a teacher net-

work with parameters V . They �nd that the learning rule they derive is optimal in

the sense that it gives the best possible expected generalization error (de�ned as the

expected value of the squared output error over all possible inputs) for this formulation.

3.1.3 The E�ective Number of Parameters

Yet another de�nition of generalization performance is the expected test set error

hEtest(�)i��0, where � is a regularization parameter (see x3.3), � is the training set

and �0 is the test set [Moody, 1992]. Moody (1992) gives an analysis of the relation-

ship between the expected test error and the expected training set error for nonlinear

learning systems such as MLPs. His main result is

hEtest(�)i��0 � hEtrain(�)i��0 + 2�2e�
pe�(�)

n
; (3.6)

where n is the size of the training set, �e� is the e�ective noise variance in the response,

and pe� is the e�ective number of model parameters. The expectation values are taken

over possible training and test sets, and the result is to second order. Equation 3.6

can be compared with the exact result for linear models using a sum of squares error

function and no regularizer:2

hEtesti��0 = hEtraini��0 + 2�2
p

n
; (3.7)

It is of interest that pe� is in general not equal to the true number of model pa-

rameters p. The e�ective number of parameters depends upon the amount of model

bias (e.g. network architecture), model nonlinearity and on prior model preferences

determined by the regularization parameter � and the form of the regularizer.

Many techniques for improving generalization are based on an Occam's Razor

heuristic: simple models are best. Weight decay (see x3.3.1) is motivated by the

intuitive notion that it causes unnecessary weights (i.e. parameters) to be removed.

Moody's (1992) analysis con�rms this, and indeed the result is applicable to all regu-

larized unbiased linear models: pe� is a decreasing function of �, with pe�(0) = p and

pe�(1) = 0. If the model is biased and nonlinear, then in general pe�(0) 6= p.

2For a particular input vector sampling probability density. See Moody (1992, p. 851).

3.1 Quantifying Generalization 40

3.1.4 The Vapnik-Chervonenkis Dimension

Another measure frequently used in the analysis of generalization in arti�cial neural

networks for classi�cation problems is the Vapnik-Chervonenkis (VC) dimension. Here

we will follow the development of [Holden and Anthony, 1992]. Quite a few de�nitions

are required before we proceed.

Without loss of generality, we consider a neural network with one output node, with

takes on the values 0 or 1. Any given such network computes a class F of functions

fw : Rn ! f0; 1g, the actual function computed depending on the weight vector w.

These functions e�ectively split the input space Rn in two.

De�nition 3.1 The hypothesis hw associated with a function fw is de�ned as the

subset of Rn for which fw = 1,

hw = fx 2 R
n jfw = 1g : (3.8)

The hypothesis space H computed by the network is the set

H =
�
hwjw 2 R

W
	

(3.9)

of all hypotheses where W is the total number of weights in the network.

The VC dimension can be regarded as a measure of the expressive capacity of the

hypothesis space of a network.

De�nition 3.2 Given a set S � Rn and some function fw 2 F , the dichotomy

(S+; S�) of S induced by fw is de�ned to be the partition of S into the disjoint subsets

S+ and S� where S+ [S� = S and x 2 S+ if fw = 1, x 2 S� if fw = 0.

De�nition 3.3 Given a hypothesis space H and S � Rn , we de�ne 4H(S) as the set

4H(S) = fh \ Sjh 2 Hg : (3.10)

We say that S is shattered by H if 4H(S) = 2S where 2S is the set of all subsets of S.

We are now in a position to de�ne the growth function and the VC dimension.

De�nition 3.4 (Growth Function) The growth function is de�ned on the set of pos-

itive integers as

4H(i) = max
S�Rn;jSj=i

j4H(S)j : (3.11)

De�nition 3.5 (Vapnik-Chervonenkis dimension) The VC dimension V (H) of a

hypothesis space H is the largest integer i such that 4H(i) = 2i, or in�nity if no such

i exists.

3.1 Quantifying Generalization 41

The growth function thus gives the maximum number of dichotomies induced by F

for any set of i points. The VC dimension is the size of the largest set of points which

can be shattered by H. As an example, consider the set of simple linear discriminant

functions:

FL =
�
sign [w0 + w1x1 + � � �+ wnxn] j w 2 R

n+1
	
: (3.12)

It is well-known that V (FL) = n+1. Such exact results are di�cult to obtain for more

complex systems such as neural networks, though some bounds have been found. For

multi-layered perceptrons with W weights and N hidden nodes, the class of functions

FMLP(W;N) has the bound [Baum and Haussler, 1989]:

V (FMLP(W;N)) � 2W log2(eN): (3.13)

Another result, commonly known as Sauer's lemma, provides an upper bound for

the growth function, given the VC dimension of a class of functions F [Holden and

Anthony, 1992].

Sauer's Lemma Given a class F of functions for which V (F) = d � 0 and

d <1,

4F (k) � 1 +

dX
i=1

�
k

i

�
: (3.14)

For �nite V (F), another useful bound is

4F (k) � kV (F) + 1: (3.15)

The VC dimension can be applied to the analysis of the ability of neural networks to

generalize. As discussed above, a neural network may be considered to compute a class

F of functions. Training of the network can be regarded as a process which tries to

�nd some fw 2 F which is in some sense a \good approximation" to a target function

fT on the given set of training examples. If an input vector x 2 Rn is chosen randomly

according to an arbitrary distribution P , we can de�ne �fw to be the probability that

the network agrees with the target function for this input vector:

�fw = Pr [fw(x) = fT (x)] : (3.16)

Now consider a sequence of k training examples, f(x1; fT (x1)); : : : ; (xk; fT (xk))g, cho-
sen at random according to P . Let vfw be the fraction of the inputs for which fw agrees

with fT . Training consists of choosing a weight vector w according to the value of vfw .

Consequently, it is necessary to know if vfw converges to �fw uniformly for all fw 2 F

3.2 Improving Generalization 42

as k becomes large. If it does not, we may choose a vfw for which �fw is relatively low,

and the probability of good generalization is thus also low.

An inequality due to Vapnik3 gives a bound for the probability that there is a

function fw 2 F for which �fw and vfw are signi�cantly di�erent. For a given threshold

value �,

Pr

"
sup
fw2F

vfw � �fwp
1� �fw

> �

#
� 44F (2k)e

��2k
4 : (3.17)

The signi�cance of this result arises because for �nite V (F), by Equation 3.15, the

growth function 4F (k) is bounded above by a polynomial function of k. Since the

right-hand side of Equation 3.17 decays exponentially as a function of k, the general-

ization error can be made arbitrarily small by choosing a su�ciently large k. Moreover,

Equation 3.17 provides a bound on the rate of convergence during training.

Summary

Although these are useful and powerful ways of characterizing the ability of neural

networks to generalize, they all address the generalization problem from the perspective

of a learning environment in which the input and output vectors are essentially drawn

at random from some population, according to some probability distribution. This may

be appropriate when attempting to estimate the ability of a network to generalize in the

presence of noise with known statistics, or when trying to quantify the representational

power of a given network architecture. Theoretical results such as these, however, would

seem to have little bearing on the design of networks where the transformations of the

input patterns are known a priori. This serves to emphasize the di�erence between

generalization and invariance.

3.2 Improving Generalization

3.2.1 Large Training Sets

The most basic approach to improving the generalization performance of a neural net-

work, however it might be de�ned, is to increase the size of the training set. Many of

the results described in x3.1 provide estimates or bounds for the number of training

examples required to achieve a speci�ed generalization performance. In the most basic

sense, it is desirable to have su�cient training examples to span the parameter space

of the network (see x3.1.2).
The use of large training sets is such a ubiquitous feature of neural network applica-

tions that it would be possible to cite thousands of references. As examples of the sizes

3This is from Holden and Anthony (1992).

3.2 Improving Generalization 43

of training sets often employed, Plaut and Hinton (1987) use 250,000 training examples

for a network with 54 input nodes and 2 output nodes. This is discussed in detail in

x4.3. Fontaine and Shastri (1992) use 5450 training images for their digit recognition

system. Khotanzad and Lu (1990) use 24 slightly perturbed images of each of the 26

letters of the alphabet for their character recognition system. This approach is almost

universal in the neural networks literature.

One of the aims of the Model-Based Neural Network approach is to obviate the

need for such large training sets. By designing networks with guaranteed invariance

properties, the need to include transformed and perturbed images in the training set

can be removed. This aim will form a part of much that follows in this thesis.

3.2.2 Cognitron and Neocognitron

One of the most durable families of neural networks for pattern recognition has been

that of Cognitron [Fukushima, 1975] and its successor, Neocognitron [Fukushima, 1980].

Cognitron is a self-organizing multi-layered network that is trained using a Hebbian

scheme [Hebb, 1949]. Much of the inspiration for Cognitron was biological, and

Fukushima made some claims now known to be false (e.g. \it is known that the capa-

bility of a layered neural network is greatly enlarged if the number of the neural layers

is increased." [Fukushima, 1975, p. 121].

The basic structure of the Cognitron is a series of cascade layers consisting of

neurons with limited \receptive �elds": a neuron in the layer immediately following

the input layer would have connection only to input neurons in a limited spatial area of

the input layer. As one progresses through the network, the receptive �elds of neurons

increase in size, the idea being that neurons in the �nal layer respond to features on

the entire input layer. Cognitron was trained using a small number of simple synthetic

digits and numerals, and some associative memory properties were demonstrated.

The relevance of these networks to this study dates from Neocognitron [Fuku-

shima, 1980] Fukushima (1980, p. 193) claims \The network is self-organized by \learn-

ing without a teacher", and acquires an ability to recognize stimulus patterns based

on the geometrical similarity (Gestalt) of their shapes without e�ected by their posi-

tions."(sic). With Neocognitron, the series of cascaded layers used by Cognitron was

retained, but the connection patterns and weights of neurons were constrained to be

identical within a given plane, each connected to a spatially-shifted region of the layer

above. There could be several planes in a given layer. \Hence, all the cells in a single

cell-plane have receptive �elds of the same function, but at di�erent positions" [Fuku-

shima, 1980, p. 195]. This is conceptually similar to the MBNN systems introduced

in Chapter 4. Neocognitron was trained with a single noise-free example of each of

the digits f0,1,2,3,4g, and was shown to be able to classify some distorted and noisy

examples correctly.

3.2 Improving Generalization 44

This work was extended to larger datasets in Fukushima, Miyake and Ito (1983)

and Miyake and Fukushima (1984). Supervised learning was introduced into the model,

along with other variations. The authors continued to make strong claims for the

invariant pattern recognition capabilities of their systems, e.g. \each cell of the deepest

layer of the network responds selectively to a speci�c stimulus pattern and is not a�ected

by the distortion in shape or the shift in position of the pattern" [Fukushima et al., 1983,

p. 826].

The claims for the invariant properties of the Neocognitron were made without

rigorous mathematical analysis. Barnard and Casasent (1990) show that the perfor-

mance of the Neocognitron is not intrinsically shift-invariant, and that any invariance

comes as a trade-o� with classi�cation sensitivity. In fact, Neocognitron's apparent

shift invariance is basically the result of summing the total energy of the input layer.

Despite this, work has continued based on the assumption that Neocognitron is shift-

invariant: Himes and I~nigo (1992) combine log-polar mapping with the Neocognitron

in an attempt to produce a shift-, scale- and translation-invariant system, and [Li and

Wu, 1993] introduce layers that produce rotated versions of the input pattern to add

rotation invariance to Neocognitron.

3.2.3 Cascade-Correlation

The Cascade-Correlation algorithm, introduced by Fahlman and Lebiere (1990), is a

combined architecture and supervised learning algorithm. Rather than just adjusting

the connection weights in a pre-determined network structure, Cascade-Correlation

starts with a minimal network (no hidden nodes), and adds new hidden nodes one after

another. Once a node is trained, its input weights are never trained again. New nodes

have all existing nodes as inputs, and are connected to all the outputs. This means

that no backpropagation is necessary, since the only weights ever adjusted are between

the output units and all the other nodes in the network: the simple Widrow-Ho� delta

rule can be used [Widrow and Ho�, 1960].

When a new hidden unit is needed a pool of candidate units is created. The can-

didate units have input connections from all the input units and existing hidden units.

The candidate units are trained to maximize the correlation between the candidate

units' outputs and the residual output error of the network. When training is deemed

to have converged, the candidate unit with the highest correlation with the output

error is selected and installed as the new hidden unit. Its input-side weights are �xed,

and the process is then repeated until the output error of the network is acceptable.

The architecture is also extensible to recurrent networks [Fahlman, 1991].

Fahlman and Lebiere (1990, p. 12) state that \by training one unit at a time instead

of training the whole network at once, we can speed up the learning process consid-

erably, while still creating a reasonably small net that generalizes well". In terms of

3.2 Improving Generalization 45

generalization, Cascade-Correlation belongs to the \less is more" school. It builds a

network that is near-minimal in terms of the number of nodes and connections nec-

essary to characterize the training set. Many techniques for improving generalization

(weight decay, pruning, etc.) are based on the notion that fewer network parameters

leads to better performance.

The drawback is that in Cascade-Correlation everything about the network is de-

termined by the training set. Such a technique must be vulnerable to over�tting noise

in training sets unless the training sets are large. Cascade-Correlation does not ad-

dress the problem of invariance at all. It is worth noting that the notion that smaller

networks generalize better has been challenged. Lawrence, Giles and Tsoi (1996), for

instance, report that oversize networks can result in lower training and generalization

error for certain problems.

3.2.4 Massive Weight-Sharing

Lautrup, Hansen, Law, M�rch, Svarer and Strother (1994, p. 1) state the generalization

problem very nicely:

The aim of learning is to match a model to data in such a way that general-

ization ability ensues. Whether this is possible depends intricately on the training

procedure and on the architecture of the learning machine. If the model is overly

restrictive, it cannot \capture the rule", hence it fails to implement the the training

set. On the other hand if we train a model with too high capacity for a given data

set, it is unlikely that the model will generalize. The reason is that there will be

many di�erent ways to implement the training set in the model, i.e. to generalize

from it.

Lautrup et al. (1994, p. 1) consider generalization for extremely ill-posed problems:

problems with a vast number of highly-correlated inputs, but only a small number of

available training patterns. Such problems are common in image and spectral analysis.

Their solution uses a similar approach to that of Singular-Valued Decomposition [Press

et al., 1992]: the problem is transposed from a high-dimensional input space to a low-

dimensional \signal-space". In neural network terms, the e�ect is to induce massive

weight-sharing by constraining the network weights to a low-dimensional subspace,

rather than letting training explore the entire space of dimensionality equal to the

number of weights. This is done by expanding the weights fwg so that they are

expressed as linear combinations of the set of vectors fxg which span the signal space

of training inputs.

wj =

pX
�=1

�j x� (3.18)

3.2 Improving Generalization 46

Optimization is then performed on the coe�cients f
�j g rather than on the weights.

This \trick" is only possible if there are strong correlations between the components

of the input vector. In fact this approach is directly related to Principal Components

Analysis. Principal Components Analysis gives direct access to a set of orthogonal

vectors which span the input space, and it is possible to formulate Massive Weight-

Sharing to use these vectors as its basis. Principal Components Analysis also ranks

these vectors in terms of their contributions to the input variance. It would be possible

to reduce the dimensionality of the e�ective weight space by truncating the spanning

set according to this ranking.

Lautrup et al. (1994) report that this technique was used to reduce the dimen-

sionality of a problem from Positron Emission Tomography from 141,375 to 47. The

generalization results reported are in fact not very good. This is attributed to the

fact that most of the variance (the �rst 7 principal components) is in fact inter-subject

variance.

3.2.5 Pruning Techniques

Another approach to reducing the dimensionality of a network's weight space in the

hope that this will improve generalization is to \prune" weights which are deemed to

be insigni�cant.4 Rather than simply removing small weights by analogy with Weight

Decay (see x3.3.1), pruning techniques take a more sophisticated approach. Optimal

Brain Damage [Le Cun, Denker and Solla, 1989] removes the weights that have the least

e�ect on the training error, based on a diagonal approximation of the Hessian of the

network. The pruned network must be retrained, introducing additional computational

cost. The diagonal assumption is also inaccurate [Asriel U. Levin and Moody, 1994].

Other pruning techniques exist, such as Principal Components Pruning [Asriel U. Levin

and Moody, 1994], but all are training set-driven, and none address the invariance

problem.

3.2.6 Using Prior Information

One of the aims of the Model-Based Neural Networks approach is to provide a mech-

anism by which the network designer can utilize his prior expert knowledge of desired

network performance and the problem domain to constrain the construction of net-

works. Several existing approaches to improving network performance make use of

prior information, in a variety of ways.

Omlin and Giles (1992) discuss the training of recurrent networks using \hints".

By this they mean that some weights are set to large absolute values before training

starts, rather than the usual initialization of all weights to small random values. Their

4To prune a weight means to remove the corresponding connection from the network.

3.2 Improving Generalization 47

application is the recognition of regular languages de�ned by transition grammars.

Hints are inserted by setting weights corresponding to known allowed or forbidden

transitions to large or small values respectively. Only partial knowledge of the target

grammar is included as hints. They found that this prior knowledge could indeed

improve convergence time during training, but that generalization performance with

hints was unpredictable, and \did not su�er signi�cantly by using hints" [Omlin and

Giles, 1992, p. 6].

The ability of the backpropagation algorithm to make use of prior information about

data from known distributions is investigated by Barnard and Botha (1993). They take

a Bayesian perspective: the prior knowledge to which they refer is the probability that

an unknown input pattern belongs to a particular class. They report that linear least

mean-squares classi�ers can be shown to place their decision boundaries sub-optimally

on this basis: they tend to guess the most likely class too often. In this case the prior

information is implicit in the training set, in the form of the frequency of class ex-

amples. They �nd that backpropagation on multi-layered networks tends to employ

such prior information sub-optimally, although the di�erence from a theoretically-deter-

mined Bayes optimal classi�er was slight. Experimental results indicate that network

performance approaches the Bayes limit as the size of the training set increases. This

is in contrast to the linear classi�er, where the performance is a function of the values

of the prior probabilities.

Prem, Mackinger and Dor�ner (1993) introduce a method for inserting a priori

symbolic knowledge into a neural network called Concept Support. Rather than relying

upon setting particular weights, knowledge is inserted by pre-training the network on

concepts or rules thought to be important for the eventual task to be performed by

the network. It is hoped that this will address problems such as the fact that not all

necessary knowledge might be present in the training data (for generalization), and

that pre-programming might help the network to avoid spurious local minima during

subsequent training. Prior knowledge inserted in this way can always be \over-written"

during later training.

As an example of Concept Support, Prem et al. (1993) considered the problem of

diagnosing coronary artery disease from thallium-201 scintigrams of the heart. Prior

information could take the form of statements such as \there is a di�erence between

the scans of men and women". A network was initially trained to classify scans as

belonging to a man or a woman. The output units were then removed, and replaced

by a new unit. The network was then trained to classify the input for the presence of

disease on the left or the right side of the heart. The correct test set prediction rate rose

from 60% to 73% as a result of this Concept Support. The experiments in Prem et al.

(1993) all show improved performance as a result of this technique, but the treatment

is entirely empirical.

3.3 Regularization Approaches to Invariance 48

3.3 Regularization Approaches to Invariance

The most common method used to attempt to improve generalization is to augment

the usual least squares cost function E (Equation 1.3) with some auxiliary function of

the weights, producing a new cost function C:

C =
1

2

X
l

X
c

(ylc � tlc)
2 + �g (wij): (3.19)

The choice of this auxiliary function g (wij) often seems to be based more on intuition,

or empirical knowledge of network performance, than any speci�c knowledge of the

task that the network is supposed to perform. The training process then becomes a

compromise between minimizing Equation 1.3 and minimizing the auxiliary function.

The auxiliary function is often a \complexity measure" of the network. Consequently,

there is an underlying heuristic in this approach: less \complex" networks generalize

better.

3.3.1 Weight Decay

Probably the most common auxiliary function is the sum of the squares of all the

weights in the network [Krogh and Hertz, 1992; Plaut and Hinton, 1987]:

C =
1

2

X
l

X
c

(ylc � tlc)
2 + �

1

2

X
i

w2
ij: (3.20)

This cost function leads to a simple \weight decay" term in the weight update equation

(Equation 4.14):

wk (t+ 1) = wk (t)� "
@E

@wk (t)
� �wk: (3.21)

Here E is the sum of squared errors from Equation 1.3, and the \momentum" term has

been omitted. This is easy to implement, and limits the development of any weights

with \large" absolute value. The trade-o� with the minimization of E is determined

by the parameter �. The argument for using this cost function is that it prevents the

network from \over-�tting" the data, since weights that are unimportant for the task

(and consequently have @E
@wk

� 0) will decay to zero at a rate determined by �. Another

justi�cation that is claimed for this approach is that it minimizes the sensitivity of the

output to noise in the input [Nowlan and Hinton, 1992a], although this claim is based

on results derived for a linear system. This approach can also be interpreted, from

a Bayesian perspective, as specifying a particular prior probability distribution of the

weights. This is discussed below as a special case of \Soft Weight-Sharing".

3.3 Regularization Approaches to Invariance 49

3.3.2 Soft-Weight Sharing

Soft Weight-Sharing [Nowlan and Hinton, 1992a; Nowlan and Hinton, 1992b] is, in

essence, a generalization of the Weight Decay approach. Rather than introducing an

auxiliary function that causes all weights to have a tendency to decay to zero, they

model the weight space as being the result of having selected each weight from a popu-

lation having a prior probability distribution given by a mixture of Gaussian probability

distributions, with nonzero means. The complexity measure is then based on how prob-

able the current state of the network is, given this prior distribution. The aim of this

technique is to cause the weights in the network to cluster in \families" close to the

means of the Gaussians. Weight decay can be viewed as the result of this technique

applied using a prior distribution consisting of a single zero-mean Gaussian with vari-

ance 1
� . The means, variances and mixing proportions of the Gaussians are adjusted

simultaneously with the weights during training.

Like weight decay, Soft Weight-Sharing is based on assumptions about the desired

properties of the weights that are not derived from the task at hand, and consequently

is also vulnerable to small training sets.

3.3.3 Tangent Prop

The aim of Tangent Prop [Simard, Victorri, Cun and Denker, 1992] is to incorporate

a priori knowledge of the desired invariances of a network into the training procedure.

If the response of the network is invariant under some distortion (e.g., rotation, trans-

lation, dilation) of the input pattern, then the derivative of its output with respect to

such distortions should be zero. For a truly invariant system, this derivative would

vanish everywhere. Tangent Prop seeks neural networks invariant under small spatial

distortions of the training patterns. It thus seeks weight con�gurations for which the

derivative vanishes for the given training examples. This approach can lead to \local"

invariance (in the neighbourhood of the training patterns), but can only produce global

variance by chance.

When a pattern P is transformed by a transformation s depending on n parameters,

the set of all possible transformed patterns S(P) is a manifold of at most n dimensions.

The patterns in S(P) obtained from small transformations of P (i.e. the part of S(P)

close to P) can be approximated by the tangent plane to the manifold S(P) at point

P . Small transformations of P can be obtained by adding to P a linear combination

of the vectors that span the tangent plane.

Tangent Prop approximates the vectors corresponding to such small transformations

by taking the �nite di�erence between actual training patterns and distorted versions

computed from them. The usual least squares error function is augmented with a

regularizing term Er that is proportional to the square of the error of the derivatives

3.3 Regularization Approaches to Invariance 50

of the outputs with respect to the known desired invariances. The weight-update rule

becomes:

�wij = �" @

@wij
(E + �Er); (3.22)

where, for an input pattern x, network output G(x) and a transformation operator

parameterized by �, si(�; x),

Er =
X

x2training set

Er(x)

Er(x) =
X
i

Ki(x)�
�
@G(si(�; x))

@�

�
�=0

2 ; (3.23)

where Ki(x) is the desired directional derivative of G in the direction induced by trans-

formation si applied to pattern x. For the case of local invariance, Ki(x) is simply set

to zero. The directional derivative can be written

@G(si(�; x))

@�

����
�=0

= JG(x)
@si(�; x)

@�

����
�=0

; (3.24)

where JG(x) is the Jacobian of the network transformation G. This directional de-

rivative can be computed by a forward propagation of the estimated tangent vector

through a linearized version of the network.

Training a network using Tangent Prop is thus similar to using plain backpropaga-

tion, with the addition that tangent vectors are also propagated through the network.

The technique provides a means of introducing a priori known desired invariances di-

rectly as a constraint on the training of the network, but can only achieve invariance

in the neighbourhood of its training patterns. It still requires a large training set if

invariance is desired over an entire input space.

Leen (1995) makes explicit the relationship between the use of the regularizer pro-

posed in Tangent Prop and simply augmenting the training set with the distorted

versions of the input patterns used to compute the tangent vectors. He shows that

learning is equivalent if the weighting term � in Equation 3.22 is chosen to be the

variance of the distortions introduced into the original training set.5 This shows that

regularization in this form really belongs to the family of large training set methods,

rather than being a true constraint on the network architecture or weight space.

5The equivalence only holds up to order O(�2). This is reasonable since Tangent Prop's approxi-
mations only hold for small distortions.

3.4 Invariant Representations and Features 51

3.4 Invariant Representations and Features

3.4.1 Invariant Representations

Associative Memory and ART techniques

In this thesis, many of the Model-Based Neural Networks proposed consist of a neural

system which pre-processes the input pattern to extract invariant features, or trans-

forms the input pattern into a representation which is invariant under certain trans-

formations. Such networks have been proposed before, although usually restricted to

very simple transformations and input patterns. Several are described below.

Associative Memories

The generalization properties of associative memories have been discussed in x3.1.1.
Some attempts have been made to construct associative memories that can correctly

associate transformed versions of the input patterns with which they were trained. Kree

and Zippelius (1988) propose a network that can recognize topologically-equivalent

graphs. The system consists of two coupled networks: a Hop�eld network to store and

retrieve that data, and a preprocessor to transform the input data. Graph-matching

is performed by generating isomorphisms of the input graph and using these to try to

retrieve a learnt graph. The use of a network that transforms the input data to an

invariant representation makes this a MBNN in the sense of this thesis.

Another scheme is a neural network implementation of cross-correlation [Austin,

1989b; Austin, 1989a]. The input patterns used are n-dimensional binary vectors: a

simple straight line of 1s and 0s. A preprocessing system is used which computes all

possible shifts of the linear input pattern, and computes the Hamming distance between

these and the stored patterns. The minimum Hamming distance indicates the best

match. It is shown how a more e�cient pattern encoding scheme can reduce storage

requirements. Importantly for this thesis, Austin shows how this may be implemented

in a neural network, making this a MBNN in our sense, albeit for a very simple problem.

Since this network computes all possible transformed versions of the input pattern, it

is in fact doing a form of cross-correlation.

Adaptive Resonance Theory (ART) Networks

Another system which uses a pre-processing network to produce an invariant repre-

sentation of its input pattern is proposed by Srinivasa and Jouaneh (1992). Here the

classi�cation stage used is an ART network [Carpenter and Grossberg, 1987; Carpenter

and Grossberg, 1988]. The invariance net is designed to be invariant under translations

and 90� rotations of an 8 � 8 input layer. The invariance net thus consisted of 256

\slabs" of 8 � 8 neurons each, each slab corresponding a a particular combination of

3.4 Invariant Representations and Features 52

shift and rotation parameters. This approach is again just multidimensional cross-

correlation, and is extremely expensive in both space and computation. Each slab

is connected with equal weights to the classi�er. Since all possible allowed transfor-

mations of the patterns are computed for the input pattern, this 16384-dimensional

representation of the 64-dimension input pattern is indeed invariant, though far from

e�cient. This system is shown to be able to classify correctly transformed versions

of 4 uppercase alphabetic characters. A version of this system that has better noise

tolerance is given in [Srinivasa and Jouaneh, 1993].

3.4.2 Invariant Features

The simplest way to do invariant pattern recognition with a neural network is to present

the network not with the input pattern itself, but with an invariant representation of the

pattern computed by some other system. Training and recognition take place entirely

with the invariant representation, and the neural network is used only as a classi�er.

Any of the invariant pattern representations discussed in Chapter 2 could be used in

this way.

Some studies have been done which investigate the performance of neural network

classi�ers for such data. For example, Khotanzad and Lu (1990) compare MLPs trained

with backpropagation trained with geometrical moments (see x2.2.1) and Zernike mo-

ments (see x2.2.2). They found that performance with Zernike moment features was

superior, and in particular more robust to noise. Since the invariance in this approach

does not arise from the networks themselves, it is not considered at greater length here.

3.4.3 Higher-Order Neural Networks

An important class of neural networks in the context of this thesis are Higher-Order

Neural Networks (HONNS). HONNs can be considered to be a form of MBNN specif-

ically designed for invariant pattern recognition. They di�er from any of the MBNNs

introduced in this thesis, but they share the same goal: to create a neural network ar-

chitecture which gives a response with guaranteed invariance properties. Several forms

of HONN exist which address various combinations of shift, rotation and scale invari-

ance [Perantonis and Lisboa, 1992; Redding, Kowalczyk and Downs, 1993; Schmidt

and Davis, 1993; Spirkovska and Reid, 1994; Delopoulos, Tirakis and Kollias, 1994].

Although these networks achieve some success on this task, they have several severe

disadvantages, most importantly the storage requirements and scalability of the ap-

proach.

The layer immediately following the input layer of a HONN contains nodes which

compute weighted sums of products of the activation of the input nodes. For a third

3.4 Invariant Representations and Features 53

order network, the output of a hidden node yi is

yi = f

0@X
j

X
k

X
l

wijkxjxkxl

1A ; (3.25)

where f is the transfer function, and fxj; xk; xlg are the activations of three input

nodes. Invariance is introduced into HONNs by choosing the weights for pairs (2nd

order HONNs) or triples (3rd order HONNs) of input nodes with a given geometrical

relationship to be the same. Shift invariance could be obtained with a 2nd order HONN

by ensuring that all pairs of nodes joined by a line of a given length and orientation

have the same weight. Shift, rotation and scale invariance can be obtained with a 3rd

order HONN by ensuring that all triples of nodes corresponding to similar triangles

have the same weight.

The most signi�cant problem is the combinatorial explosion of the number of weights

required. Input layers for pattern recognition networks typically have hundreds of

nodes. A hidden node in a 3rd order HONN would thus have to sum
�100

3

�
= 161; 700

product terms. For the optical character recognition problem addressed in Chapter 7,

which uses a 56�57 node input layer, each hidden node would have 1:08�1010 weights.

Not only must these weights be stored, but all of the corresponding triples of input nodes

must be searched to �nd those sharing the required geometrical relationships. This is

clearly prohibitive.

There are other problems relating to sensitivity to noise, and sampling problems.

On discrete lattices, for instance, there are many more possible similar triangles at

large scales than at small ones.

It is not surprising that applications of HONNs do not usually use them in this

raw form. Perantonis and Lisboa (1992) present a technique for reducing the required

number of weights for third order HONNs based on \approximately similar triangles",

de�ned by angles falling within certain speci�ed tolerances. This allows triangles to

be coarsely binned into approximately similar classes, but still requires approximately

107 weights for a 400 pixel input layer. This is further restricted by only storing values

for triangles with a vertex at a certain point: other triangles are translated there

as needed (not a neural operation). They found that this system performed better

than a system using Zernike moment features for the recognition of typed computer-

transformed numerals, both with and without noise. The best test set performance for

patterns which had been both rotated and scaled was 79% correct for the HONN and

63% correct using Zernike moments.

Spirkovska and Reid (1994) investigate several other schemes for reducing the di-

mensionality of the HONN weight space. The consider local connectivity, where triples

are only connected if all the inter-pixel distances fall below some bound, this sacri�cing

3.4 Invariant Representations and Features 54

a degree of scale invariance. Other options include sampled connectivity and regional

connectivity. They �nally settle upon a coarse coding scheme, where overlaying �elds

of coarse pixels are used to represent an input �eld composed of smaller pixels. For

example, a 10 � 10 input layer may be represented without loss of information by 4

layers with 5 � 5 pixels of twice the size, each o�set by one (small) pixel horizontally

or vertically. The advantage is that
�10
3

�
= 120, whereas 4

�5
3

�
= 40. The HONN is

constructed using triples taken from the coarse layers. At larger input layer sizes the

di�erence is even more dramatic.

4. Model-Based Neural Networks 55

Chapter 4

Model-Based Neural Networks

4.1 The Model-Based Classi�er

In this chapter an implementation of MBNNs is introduced in which the networks are

modeled in two senses. First, the multilayer feed-forward structure of TNNs (Tradi-

tional Neural Networks, without modeling the connections) is generalized to a multilevel

feed-forward structure, in which there are one or more layers of nodes at each level.

An example of such a structure appears in Figure 4.2. This allows a level to consist

of several layers that act as �lters, each with di�erent parameters, that all receive the

same input from a layer above. The outputs of these �lter layers might then form the

input to a conventional classi�er.

The second sense in which these networks are modeled concerns the speci�cation

of the weights on the connections between individual layers. These MBNNs are to be

constructed so that their structures model the tasks which they are to perform. One

powerful means of achieving this is to make the weights of the connections between

nodes depend on the relative positions of the nodes. Consequently, the input to a node

can be constrained to be a given function of the outputs of its source nodes, taking

into account their geometric relationships. The use of the same parameters to specify

the weighting functions for many di�erent connections allows the dimensionality of the

parameter space, which must be searched during training, to be reduced greatly.

We have introduced a de�nition of \nodal distance" for each layer of the NN in

order to structure information processing in terms of the relative positions of nodes

within each layer. In this study, all nodes are assigned Cartesian coordinates within

their layers, such that the distance between horizontally or vertically adjacent nodes is

1. The origin of coordinates for each layer is situated at the centroid of the layer. The

distance dij between nodes i and j in di�erent layers is calculated by projecting the

layers onto each other so that their centroids coincide and then calculating the distance

between nodes using the chosen metric of their coordinates as if they were in the same

4.1 The Model-Based Classi�er 56

layer. In this sense, the topology of the layers and the metric used play an important

role in this form of MBNN. In the work that follows, the metric used was the 2-norm,

the usual Euclidean distance.

We have considered three di�erent forms of connection model. For each destination

layer (hidden or not), the weighting function f is de�ned by one of the following forms.

M.1 Each individual connection has it's own parameters aij such that:

wij = f (aij; dij) : (4.1)

M.2 For a given destination plane, or set of nodes, each node has new parameters

aj such that:

wij = f (aj; dij) : (4.2)

M.3 Each node of a given destination plane has the same parameter values:

wij = f (a; dij) : (4.3)

The backpropagation training procedure can be extended using the Chain Rule so that

the gradient descent is performed on the weighting function parameters faijg, rather
than on the weights themselves. In all three cases the Chain Rule applies in the same

way. One extra step in di�erentiation is required (see Equation 4.11), so the degree of

computational complexity increases. Indeed, it should be noted that there is a trade-o�

between computational complexity in terms of the number of di�erentiations required

and the number of parameters, in such situations. However, we will show that the

parameter reduction of the MBNN is signi�cant enough to compensate for this increase

in complexity. Further, we will show that such signi�cantly lower-order representations

prove to have greater robustness to noise, and generalize with respect to the invariance

characteristics of the network geometry, connection model and class sample variabilities.

As with traditional NNs, the Chain Rule is used to relate the shape of the transducer

function to the error function (Equation 1.3). That is,

@E

@yi
=
X
c

(yjc � tjc) (4.4)

and

@E

@xj
=
@E

@yj

@yj
@xj

: (4.5)

For our �rst implementation of a MBNN, we have modeled connection weights fwijg

4.1 The Model-Based Classi�er 57

as functions of a vector of parameters, aij , and the distance dij between the nodes:

wij = f (aij; dij) : (4.6)

In fact, the usual TNN model is a degenerate case of Equation 4.6, where

wij = aij : (4.7)

For this application, three potentially useful weighting functions are: one, a Gaussian:

wij = a1 exp
��a2d2ij� ; (4.8)

two, the Gabor function:

wij = a1 exp
��a2d2ij� cos (a3x+ a4y + a5) ; (4.9)

and three, a function implementing a radially-symmetric narrow-band �lter:

wij = cos (a1dij) : (4.10)

Using the Chain Rule, we obtain the equivalent derivative of the error function, now

with respect to the parameter ak, de�ned by:

@E

@ak
=

@E

@wij

@wij
@ak

: (4.11)

When a parameter is shared by more than one connection, it is necessary to sum the

partial derivatives of the error with respect to that parameter over all the connections

that depend on the parameter.

For the TNN case,
@wij
@ak

= 1 for all i; j; k. For the Gaussian case, for example, we

obtain:

@wij
@a1

= exp
��a2d2ij� (4.12)

and

@wij
@a2

= �a1d2ij exp
��a2d2ij� : (4.13)

Further, the gradient descent methods work in exactly the same way as for the non-

parametric representations, resulting in the iterative state space equation:

ak(t+ 1) = ak(t)� "
@E

@ak(t)
� �

@E

@ak(t� 1)
(4.14)

4.1 The Model-Based Classi�er 58

where " and � are set by the user to determine the resolution of the convergence or

search procedure. Typical values are " = 0:005 and � = 0:5.

4.1.1 Relation to Adaptive Filtering

For this speci�c formulation, the MBNN essentially becomes a generalization of the

well-known �lter estimation problem in Adaptive Filter Theory. Speci�cally, the three

cases discussed above (M.1, M.2 and M.3) �t in with �lter estimation in the following

ways. The discrete convolution function, de�ning the action of a �lter h(x; y) on a

signal I(x; y) (here, two-dimensional), is de�ned by:

R(x; y) =
X
uv

h(u; v)I(x + u; y + v): (4.15)

The output coordinate system in Equation 4.15 corresponds to the destination layer

in the TNN. That is, the �lter kernel h acts as a weighting function (w, or mapping)

in the form of a moving window over the input signal layer (see Figure 1.1). Let us

now make a distinction between the coordinates in the input and output image planes.

Let (x0; y0) and (x1; y1) be the input and output coordinates respectively. Case M.1

corresponds to the highest form of non-stationarity, where the parameters a of the

kernel are a function of both the input and output position pairs:

w(u; v) � w(u; v;a(x0; y0;x1; y1)); (4.16)

case M.2 corresponds to:

w(u; v) � w(u; v;a(x1; y1)); (4.17)

and, �nally, case M.3 corresponds to:

w(u; v) � w(u; v;a): (4.18)

Case M.2 corresponds to a generalized Wigner function [Wechsler, 1990] when both

input and output coordinate planes are identical; and case M.3 corresponds to the

usual shift invariant �lter in so far as the kernel is constant over all positions in the

input and output layers.

From this perspective the NN provides a more general structure than the usual

adaptive �lter formulation where the �lter function parameters are assumed to be shift-

invariant and do not involve additional nonlinear transducer functions. It should be

noted, at this stage, that a number of past implementations have used adaptive �lters as

preprocessing units for NNs [e.g.Wechsler, 1990]. However, the aim of this investigation

is to study how such structures, in their most general forms, can be formulated in the

4.2 A Simple Invariance Example 59

same architecture as the remainder of the NN.

4.2 A Simple Invariance Example

The correct classi�cation of patterns that have been transformed in some way (shifted,

rotated, or scaled) is an inherently di�cult one for TNNs. Since all connections in

a TNN have independent weights, the output of such a network inevitably depends

upon the activation of speci�c nodes in the input layer. It cannot be expected that a

TNN's response to an asymmetrical input pattern that has been rotated (for example)

will even be related to its response to the initial pattern. Moreover, since the training

procedure is unconstrained, it is possible that correct classi�cation of a training set

could be achieved on the basis of the chance activation of a single node in all the

examples of one class in the training data. Such a \solution" totally fails to capture

the invariant features necessary to discriminate between the classes in general.

As discussed in x3.2.1, a typical TNN approach to the invariance problem is to

include shifted, scaled or rotated versions of patterns in the training set. Given a

su�ciently large and varied training set, and enough degrees of freedom in the network

(i.e., enough independent weights), a solution can be attained by this method. This

seems, however, to be an inappropriate approach to extracting salient features. Rather

than implementing \real" invariant pattern recognition, the network has been presented

with a large number of essentially distinct patterns that inevitably activate it in di�erent

ways, and then trained to label them as members of the same class. The invariance

is a consequence of the properties of the training data, rather than being an inherent

property of the network itself.

Tangent Prop (see x3.3.3) di�ers from this approach in that it augments the usual

least squares cost function with a regularizing term that depends on the magnitude of

the derivative of the outputs of the network with respect to various distortion operators.

If the network has a derivative of zero with respect to a given distortion operator, then

it is invariant with respect to small distortions of the input image corresponding to the

action of that operator. Tangent Prop is thus close to MBNNs in its aim: to use a priori

knowledge of the desired invariances of the network directly, rather than requiring a

training set that is su�ciently varied to cause such invariances to arise spontaneously.

It does not, however, place any explicit constraints on the weight space to be searched.

Using a MBNN, it is possible to intrinsically encode invariant features in the struc-

ture of the network and weight space. To demonstrate this, we have chosen the following

simple example. The task is to distinguish between high and low frequency regular tex-

tures presented as patterns at an input layer consisting of 15 � 15 nodes, regardless

of their orientation. It is desired, however, to train the network using only textures

of a single orientation. Consequently, the network's response must be invariant under

4.2 A Simple Invariance Example 60

rotations and shifts of patterns on the input layer.

The MBNN used consisted of a 15 � 15 input layer, connected using M.3 radially-

symmetric cosine weighting functions (Equation 4.10) to two 15 � 15 hidden layers,

which were, in turn, connected using M.2 simple weights to a 2� 2 hidden layer. This

hidden layer was then connected using M.1 simple weights to a 1�2 output layer. This

con�guration has only 1+1+2�4+2�4 = 18 independent parameters. The fact that

information from the input layer only enters the network by passing through radially-

symmetric weighting functions ensures that the network's response will be invariant

under rotations of the input pattern, in place. The M.2 connections to the next layer

simply implement a summation of the outputs of each of the two layers above, thus

making the system invariant under shifts of the input pattern. It is clear that much

information contained in the input pattern is lost in this process, but that is just the

aim of classi�cation { the removal of variance irrelevant to the discrimination of the

classes in question. The performance of this MBNN was compared to that of a TNN

having a 15 � 15 input layer, 2� 2 hidden layer, and a 1� 2 output layer. This TNN

has 908 independent parameters.

The training and test patterns used in this simulation were sampled versions of a

two-dimensional regular texture. The activation I(x; y) at node (x; y) of the input layer

was given by:

I(x; y) =
1

2
K

�
1 + cos

�
2�

�
u

x

xmax
+ v

y

ymax

���
: (4.19)

Here xmax and ymax are the horizontal and vertical dimensions of the input layer in

nodes, u and v are the horizontal and vertical components of the spatial frequency in

cycles per layer, and K is a normalizing factor introduced so that the total activation

summed over all input nodes (x; y) was equal for all combinations of u and v, except

for quantization errors. K is found by integrating over the input layer with respect to

x and y:

K =

�
1� cos (2� (u+ v)) + 1� cos (2�u)� cos (2�v)

4�2uv

�
: (4.20)

Note that this correction is necessary only when either u or v is not an integer. The rea-

son for using normalized cosine gratings rather than just bands of 1's on a background

of 0's is so that the total (sum) activation of the input layer is the same for both high

and low frequency input patterns. This prevents the TNN achieving \pseudo-rotation

invariant" performance by simply \counting ones" on the input layer.

Given that the radial frequency of the gratings is de�ned by:

f =
p
u2 + v2; (4.21)

4.2 A Simple Invariance Example 61

the training set consisted of 10 patterns, all with horizontal textures (u = f; v = 0).

Five of the patterns were \low frequency", with f = 1.00, 1.25, 1.50, 1.75 and 2.00

cycles per layer, and �ve were \high frequency" with f = 6.00, 6.25, 6.50, 6.75 and 7.00

cycles per layer. The test set consisted of 20 patterns: 10 with diagonal textures, and

10 with vertical textures. The f values were identical to those of the training set.

Five of the TNNs and �ve of the MBNNs described above were prepared for this

problem. The parameters of the TNNs were initially set to values randomly selected

from the range [�W;W]. The value of W used for the input weights to a given node

was chosen using the following formula:

W =
5

number of inputs to node
: (4.22)

This ensures that the input to the sigmoid nonlinearity is in the range [�5; 5], rather
than in the
at \on" or \o�" regions where the derivative of the sigmoid is zero,

which renders backpropagation unable to a�ect the input weights. Other optimization

techniques have trouble with such \saturated" nodes also, since small changes in the

input weights cause no appreciable change in the output.1

For the MBNNs, the pass frequencies of the two cosine �lters were both initially

set to 3.5 cycles per layer (the centre of the Nyquist range), and all the simple weights

were initialized to zero.

These networks were not, in fact, trained using backpropagation. The reason for this

is the manifest nonmonotonicity of the error surface of the MBNNs. Since the weights

to the �rst two hidden layers are generated by cosine functions, local minima abound.

Using backpropagation, it is not possible for the pass frequencies to be adjusted to the

appropriate values, since the derivative with respect to this parameter has a sinusoidal

component. Gradient descent is consequently an inappropriate optimization technique

for this problem. Whilst this is to some extent a disadvantage, it must be remembered

that local minima are a problem, often left unmentioned, for TNNs also.

The optimization technique used was simulated annealing [Metropolis et al., 1953].

The following cost function was used for the network's performance on the training

patterns:

c =
�1
2

�
sinh(�(1�))

sinh(�) + 1
�
+
P

j

P
c (yjc�tjc)

2

jc

1 + �
: (4.23)

The variable 	 is the fraction of the training patterns classi�ed correctly. The �rst

term of this cost function is thus an explicit measure of classi�cation performance. The

1Note that this initialization method was used for generating all weights for networks trained using
backpropagation throughout this thesis.

4.2 A Simple Invariance Example 62

sinh function is used so that classi�cation is rewarded nonlinearly. The function:

1

2

�
sinh (� (1�))

sinh (�)
+ 1

�
(4.24)

varies between 0 and 1 as 	 varies between 1 and 0. It has the values 0:5 when 	

equals 0.5, and is reasonable \
at" for values of 	 around 0.5. This means that small

variations around 50% correct classi�cation have little e�ect on the cost, but very poor

performance is heavily penalized and very good performance is greatly rewarded. The

parameter � determines the degree of nonlinearity of this function. For � = 1, the func-

tion is very nearly linear on the speci�ed domain. The second term is just the squared

error (as in Equation 1.3) normalized to a range of [0; 1]. The parameter � determines

the trade-o� between these two components of the cost. For these simulations, the

values � = 5 and � = 10 were used. The entire cost function is normalized to the range

[0; 1].

This cost function has the advantage that the notion of classi�cation is explicitly

included. Using the squared error (right-hand component of Equation 4.23) alone can

result in degraded classi�cation performance, since a large improvement in the error

on one training pattern can compensate for small changes in the error on more than

one other pattern, even if these small changes result in incorrect classi�cation. The

�rst term in the cost function serves to counter this e�ect. The squared error term is

retained so that the cost function does not have large \plateaus" in the regions where

classi�cation performance is constant. This allows change in parameters which reduce

the squared error to be accepted, even if they do not a�ect classi�cation performance.

The networks were trained using the simulated annealing algorithm. Each of the

parameters of the network was perturbed by a value randomly selected from the range

[�0:5; 0:5] at each iteration, and the cost function C evaluated. The usual simulated

annealing criterion was then used to determine whether or not the perturbed parameters

were to be accepted. It was found that a low \temperature" parameter was best for

this task. In fact, the results reported here are for networks trained with a temperature

parameter of zero. This means that any perturbation of the network parameters that

resulted in an increase in C was rejected. This does not make the procedure equivalent

to gradient descent, however, since the parameters are perturbed randomly. The ability

of the system to escape local minima depends upon the size of the random perturbations

compared to the depths of the local minima.

Each TNN was trained using this technique for 1000 iterations. The MBNNs were

trained for 2000 iterations. This di�erence may be attributed to di�ering error surfaces,

due to the di�erent architectures, and also to the di�erent search procedures used. They

are thus not directly comparable. It should be noted the 100% correct classi�cation of

the training patterns was usually achieved in far fewer iterations (average 48 iterations

4.3 The Plaut and Hinton Study 63

for the TNNs and 195 iterations for the MBNNs). The results appear in Table 4.1.2

TNN (1000 iterations) MBNN (2000 iterations)

Training Test Training Test

100 45 100 100
100 60 100 100
100 70 100 85
100 45 100 100
100 45 100 100

�� � 53 � 12 �� � 97 � 7.0

Table 4.1: Classi�cation performance (percent correct) of traditional and Model-Based
Neural Networks on 10 training patterns and 20 test patterns after training using
stochastic relaxation.

It is clear that the MBNNs, as expected, generalize to the rotated test patterns

extremely well. In fact, in most cases, they generalize perfectly. The TNNs, on the

other hand, to within one standard deviation, do not generalize at all, since 50% correct

classi�cation corresponds to randomly labeling all input patterns as belonging to one

of the two classes. Moreover, this greatly improved performance was achieved by a

MBNN speci�ed by only 18 parameters, compared to a TNN with 908 parameters.

That is a 50-fold reduction in the size of the parameter space. Note that the minimum

size TNN for this task (if it was solved as a two-layer problem) would still have 450

parameters. This example clearly demonstrates that the use of MBNNs allows desired

invariances to be speci�ed a priori, as well as achieving a signi�cant reduction in the

dimensionality of the state space to be searched. The use of a stochastic relaxation

training technique (simulated annealing) allows the MBNNs to be trained, despite the

fact that they have complicated, nonmonotonic error surfaces that make solution using

backpropagation infeasible.

4.3 The Plaut and Hinton Study

To illustrate further the di�erences between this model and more traditional ones, we

have considered the problem of classifying \rising" and \non-rising" signals in speech

spectrograms, as studied by Plaut and Hinton (1987). This task is an excellent example

of a problem for which an expert's knowledge of the important features for the task

can be used to construct a MBNN that is constrained to classify on the basis of those

features, and not on irrelevant di�erences between training patterns. The task consists

2Throughout this thesis, training and test set results are presented for multiple copies of identical
networks with di�ering random weight initializations, so that the repeatability of the results may be
judged. Throughout � is the mean of the classi�cation performance, and � is the standard deviation.

4.3 The Plaut and Hinton Study 64

of classifying as risers or non-risers synthetic spectrograms, represented as patterns on

a 6� 9 grid, where the vertical direction corresponds to frequency, and the horizontal

direction to sampling time. The patterns are generated under the following constraints:

1. Generate Risers (R) and Non-risers (NR) with equal probability.

2. Randomly choose one of the six possible frequencies for Non-risers. Randomly

choose one of the four highest frequencies for Risers.

3. Pick one of �ve possible onset times at random.

4. Assign the value 0.4 to each unit cell that is part of the signal, and 0.1 to the

background elements.

5. Add pseudo-Gaussian white noise to each element.

Examples of these signals are shown in Figure 4.1.

This procedure generates a population (neglecting noise cases) with 50 members:

20 risers and 30 non-risers. Plaut and Hinton (1987) attacked this problem using a

traditional NN with one hidden layer. Their network consisted of 54 input layer units,

24 hidden layer units, and, of course, 2 output layer units (R, NR) { see Figure 1.1.

Using backpropagation, they trained this network using 10,000 blocks of 25 exam-

ples, each example being generated randomly when required. By the end of this process,

the network was able to classify correctly 97.8% of unseen patterns. It must be remem-

bered, however, that this is in the context of a parameter space with 54�24+24�2 =

1344 dimensions, and an enormous set of training examples, completely spanning the

population.

4.3.1 A MBNN solution to the Riser/Non-riser Problem

We have implemented their procedure and compared it to our model-based system.

The MBNN used consisted of a 6 � 9 input layer, connected to two 6 � 9 hidden

layers at the second level using M.3 (see Equation 4.3) and Gabor weight functions (see

Equation 4.9), so that these layers were implementations of Gabor �lters responding

to line elements of given orientations in the input layer. These two Gabor layers were

connected to a conventional hidden layer of nine units, using M.1 connections and

this, using M.1, was connected to two output layer units. This network is speci�ed by

5 + 5 + 54 � 9 + 54 � 9 + 9 � 2 = 1000 parameters, a reduction of 25.6%. It should

be pointed out that the critical factor in determining this �gure is the size of the third

layer. Smaller layers were not tried, but should, intuitively, work. This system is shown

in Figure 4.2.

4.3 The Plaut and Hinton Study 65

Figure 4.1: Examples of Risers (left) and Non-risers (right) from the Plaut and Hinton
(1987) classi�cation problem. Signals were to be classi�ed as R or NR as a function of
their spectrogram shapes. These are the training patterns used in the simulations in
this thesis.

A rectifying transfer function of the form:

y =
1� e�x

2

1 + e�x2
(4.25)

was used for the outputs of the units in the Gabor layers, so that all nonzero responses

were counted as evidence for a feature being present (evidence for a particular orienta-

tion response). All other transducer functions were of the usual sigmoid form, as shown

in Equation 1.2.

The initial values of the two parameters specifying the orientations of each of the

Gabor �lters were set so that one �lter would respond to diagonal elements, and the

other to horizontal elements. This preselection process may be justi�ed by the fact that,

if an initial pre-backpropagation stage of training were included in which successive �lter

orientations were tried, the two for which the �lters' summed outputs were greatest

would have resulted in these two �lters. Such a \self-organization" process is not,

however, the focus of this study.

By explicitly including in the network knowledge of the signi�cance of the pres-

ence of lines of given orientation, it was expected that, in addition to reducing the

4.3 The Plaut and Hinton Study 66

Figure 4.2: The MBNN used to solve the riser/non-riser classi�cation problem in this
study. Input (top) to second level connections are modeled by Gabor (M.3)-type con-
nections. Other connections are de�ned by M.1 connections.

dimensionality of the parameter space, the number of training passes required would

be reduced and the need to have a set of training patterns that spanned the popula-

tion would be removed. That is, the network would generalize to the classi�cation of

patterns not present in the training set, since layers responding to the critical feature

for classi�cation (line orientation) had been included.

Five of each of these two kinds of networks (with di�erent initial parameter seedings)

were then trained, using backpropagation. A �xed set of patterns was used, consisting

of �ve risers and �ve non-risers, which were initially selected at random from the

population described above (see Figure 4.1). The parameters were adjusted after each

pass through this set. Also, the performance of the network was measured, both in

terms of the percentage of the training set correctly classi�ed, and the percentage

correctly classi�ed of a test set, consisting of 100 risers and 100 non-risers not used in

the training process.

Both kinds of network achieved 100% correct classi�cation on the training set,

as would be expected for such a small set of patterns. The MBNNs achieved this

more rapidly than the TNNs, with an average of 1224 passes required, compared to

1809 passes for the TNNs (using the same backpropagation parameters). The major

4.3 The Plaut and Hinton Study 67

di�erence between the two models, however, is their ability to generalize.

The performance of the TNNs in classifying patterns that did not form part of

their training set actually worsens as they approach 100% correct classi�cation of their

training sets, eventually declining to an average of 51.1% correct after 2000 passes: the

TNNs have very little ability to generalize.

The performance of the MBNNs is strikingly di�erent. The average percentage of

the test set correctly classi�ed was 88.5%, after 2000 passes. This is comparable to

the performance of the Plaut and Hinton (1987) network trained with 250,000 di�erent

examples, but achieved with a total of only 10. The need to span the pattern population

has been removed, as has the requirement to present patterns with numerous di�erent

noise structures. Summaries of the TNN and MBNN performance with new patterns

is shown in Table 4.2.

TNN MBNN

Network 1 50.5 99.0
Network 2 50.5 74.5
Network 3 51.5 98.0
Network 4 50.5 74.0
Network 5 52.0 97.0

�� � 51:0� 0:6 88:5 � 11:7

Table 4.2: Classi�cation performance (percent correct) of networks on 200 novel pat-
terns after 2000 training iterations on 10 patterns.

Figures 4.3 and 4.4 show the responses of one of the MBNNs to a riser and a

non-riser, respectively. The output layer responses show that the two patterns have

been classi�ed correctly. Further, the clear complementarity of the penultimate layer

responses suggests that the dimensionality of this layer could be signi�cantly reduced.

The most interesting feature of the responses, however, is the way in which the training

has altered the initial parameters of the Gabor �lter layers. The left-hand Gabor layer

was initialized to respond weakly to line segments oriented at 45� to the horizontal

(with positive gradient), and the right-hand layer to respond weakly to horizontal line

segments. The e�ect of training on the right-hand layer is predictable in so far as

that the �lter responds more strongly to horizontal segments, with more nodes being

activated by a given horizontal line. The behaviour of the left-hand layer is more

interesting. The orientation of the �lter has been rotated by the training process so

that it responds to the vertical component of the rising part of the risers. The Gaussian

component of the M.3 model (Equation 4.9) has been broadened so that any vertical

component present in the input pattern causes nodes to be activated all across the �lter

layer. By selecting the vertical components of the risers rather than the diagonals, the

4.4 Other Techniques For Improving Generalization 68

Input

Shift-invariant,
orientation-specific
filters

Decision functions

Classification

Figure 4.3: Response of MBNN to a riser. Note that the left-hand Gabor layer is
responding to the vertical component of the pattern.

�lter has \learnt" to respond to that feature of risers that is orthogonal to non-risers.

This illustrates the analogy between the network's function and principal components

analysis (see x1.1).
It is apparent in this simple two-class classi�cation problem that a much lower

dimensional solution could have been obtained by using direct adaptive �lter theory.

However, we have retained the TNN structure to illustrate how our MBNN can �t

easily within the TNN architecture.

4.4 Other Techniques For Improving Generalization

As discussed in Chapter 3, most previous e�orts to improve the generalization perfor-

mance of NNs on novel data di�er from the MBNN approach in a fundamental way.

Only one of the other techniques reviewed here challenges the notion that the training

data set alone is su�cient to determine the parameters and their relationships (if any),

and in some cases the architecture, of the NN. These methods, therefore, make the

tacit assumption that the training set is su�ciently large and varied to characterize

the task in general. None of them places restrictions on the parameter space to be

searched during training. The MBNN approach, conversely, allows the network, and

4.4 Other Techniques For Improving Generalization 69

Figure 4.4: Response of MBNN to a non-riser.

its parameters, to be constrained in a way that is known to re
ect the properties of the

task that it is to perform. One of the aims of the MBNN approach is to remove the need

to have a training set that spans the population of possible input patterns, requiring

only that the training set spans the population in the feature space determined by the

explicit modeling of the network.

A common approach to improving generalization is to use a regularizing term in

the cost function. This is usually some measure of the \complexity" of the weights,

and is independent of the application, as in Weight Decay (see x3.3.1) and Soft Weight

Sharing (see x3.3.2). Conversely, in the MBNN approach, the constraints on the weight-

space search are derived by explicitly modeling the task that the network is to perform.

An attempt was made to implement Soft Weight-Sharing so that its generalization

performance could be compared to that of MBNNs on the riser/non-risers problem.

Repeated e�orts failed to achieve a solution using backpropagation. It was suspected

that this may have been due to the Soft Weight-Sharing problem being inherently ill-

conditioned. This was later con�rmed by the author (Nowlan, personal communication,

1992).

Cascade-Correlation, discussed in x3.2.3, is another technique that is claimed to

improve generalization. In this technique, not only the connection weights, but the

entire architecture of the hidden layer(s) of the network is determined by the training

4.4 Other Techniques For Improving Generalization 70

data. In this sense, Cascade-Correlation can be seen as the antithesis of the MBNN

approach.

Tangent Prop is in the same spirit as the MBNN approach. The aim of Tangent

Prop is to incorporate a priori knowledge of the desired behaviour of the system into

the training procedure (see x3.3.3). It is still fundamentally di�erent to the MBNN

technique since the weight space searched during training is not constrained, and the

structure of the network is not chosen to re
ect desired functionality. Invariance is not

guaranteed, but must be learnt. It would be interesting to compare Tangent Prop with

MBNNs trained on the same data.

In order to demonstrate that the MBNN approach can lead to superior generaliza-

tion than techniques that take no account of the known properties of the target system,

TNNs identical to those used in the previous examples were trained using backpropa-

gation and weight decay. Five networks with di�erent initial parameter seedings were

created in each case, and then copies of these networks were made. These sets of

identical networks were then trained using various di�erent values of the weight decay

parameter � (See Equation 3.21. This allows the e�ect of various values of � to be

compared, since the networks had identical starting conditions.

The results for the networks trained for the regular textures problem appear in

Table 4.3. To within one standard deviation, there is no di�erence between the perfor-

mance of the networks trained with no weight decay (� = 0) and those trained with

each of the various values of �. The trend, if any signi�cance can be attached to it, is

that weight decay degrades generalization performance for this task. The generaliza-

tion performance of all these backpropagation-trained TNNs, with and without weight

decay, is still well below that of the MBNNs described in x4.2.

�
0.000 0.001 0.005 0.010

Network 1 65 65 60 65
Network 2 55 70 70 55
Network 3 65 55 50 50
Network 4 65 60 60 60
Network 5 65 60 60 50

�� � 63� 4:5 62� 5:7 60� 7:1 54� 6:5

Table 4.3: Classi�cation performance (percent correct) of TNNs on texture test data
for various values of the weight decay parameter �, after 1000 iterations.

The results for the application of weight decay to the TNNs used for the riser/non

riser problem appear in Tables 4.4 and 4.5. Again, it was not possible to claim that

weight decay improved generalization. When � = 0:005, the performance on the train-

4.4 Other Techniques For Improving Generalization 71

ing data improved to 53.0%, but the networks failed to achieve 100% classi�cation of

the training set. In fact, with � = 0:01, the networks were unable to �t the training

data at all. The performance of the MBNNs described in x4.3 is greatly superior.

�
0.001 0.005 0.010

Network 1 100.0 90.0 50.0
Network 2 100.0 90.0 50.0
Network 3 100.0 90.0 50.0
Network 4 100.0 90.0 50.0
Network 5 100.0 90.0 50.0

�� � 100:0 � 0:00 90:0� 0:00 50:0 � 0:00

Table 4.4: Classi�cation performance (percent correct) of TNNs on Riser/Non-riser
training data for various values of the weight decay parameter �, after 1000 iterations.

�
0.001 0.005 0.010

Network 1 50.0 53.5 50.0
Network 2 50.0 53.5 50.0
Network 3 50.0 53.5 50.0
Network 4 50.0 53.5 50.0
Network 5 50.0 53.5 50.0

�� � 50:0 � 0:00 53:5 � 0:00 50:0 � 0:00

Table 4.5: Classi�cation performance (percent correct) of TNNs on Riser/Non-riser
test data for various values of the weight decay parameter �, after 1000 iterations.

These results show that weight decay can adversely a�ect network performance on

the training data, and is no guarantee of improved generalization performance.

It can be seen, therefore, that MBNNs o�er a superior means of achieving good

generalization performance for tasks which are su�ciently well understood to enable

MBNNs that encode the necessary invariant features to be constructed. Moreover,

previous methods supposed to improve the generalization performance of NNs are often

based on beliefs about the desirable properties of the connection weights that are not

necessarily valid, and take no account of the nature of the task for which the network

is designed.

4.5 An Extremely Low-dimensional Solution to the R/NR Problem 72

4.5 An Extremely Low-dimensional Solution to the R/NR

Problem

Since the work described in the previous sections was carried out [Caelli, Squire and

Wild, 1993], some further investigations have been done which indicate that MBNN

solutions for this problem exist with dramatically fewer parameters than those so far

described, and with more consistent performance. An example is the network shown

in Figure 4.5.

Figure 4.5: A MBNN that solves the Riser/Non-riser problem with only 22 parameters.

This MBNN has a 6�9 input layer, connected to two 6�9 hidden layers at the second
level using M.3 and Gabor weight functions, as in the network described in x4.3.1. The
transfer function of these layers was the rectifying function given in Equation 4.25.

These two Gabor �lter layers were connected to a hidden layer of two units, using M.2

simple connections, so that each of these nodes was forced to respond only to the sum

energy of the �lter layers. These nodes were connected using M.1 simple connections to

the two output layer units. This network is speci�ed by 5+5+(2+1)�2+(2+1)�2 = 22

parameters, a reduction of 98.36% over the original network used by Plaut and Hinton

(1987). This reduction is possible because an a priori design is implemented. Using

4.5 An Extremely Low-dimensional Solution to the R/NR Problem 73

expert knowledge of the problem domain, it was decided that the system should consist

of the following components:

� Two �lters that respond to line orientation, with outputs recti�ed so that only

the \energy" of the response is measured.

� Two nodes that integrate this energy over the entire �lter, so that the position of

the activation in the layer is irrelevant.

� A simple linear classi�er to distinguish between the activation of the two �lter

integrators.

Note that, as always with MBNNs, all that is left after training is a simple neural

network. Importantly, however, although this network has 6056 connections, it has

only 22 free parameters during training.

Twenty networks of this architecture were created, each with di�erently initialized

parameters. In this case the initial orientations of the Gabor �lter layers were ran-

domly initialized, unlike those in x4.3.1. The training and test sets used in the study

described in x4.3.1 were used again. Ten of these networks were trained using simulated

annealing [Metropolis et al., 1953; Kirkpatrick et al., 1983], and ten with the extended

backpropagation algorithm described in x4.1.

4.5.1 Simulated Annealing

The results for the networks trained using simulated annealing are shown in Table 4.6.

These results indicate that solutions which exhibit perfect generalization to the test set

Best Final (20000 iterations)
Training Data Test Data Training Data Test Data

Network 1 100.00 90.00 100.00 85.00
Network 2 100.00 100.00 100.00 99.50
Network 3 100.00 90.00 100.00 82.00
Network 4 100.00 100.00 100.00 98.50
Network 5 100.00 100.00 100.00 100.00
Network 6 100.00 98.00 100.00 96.50
Network 7 100.00 100.00 100.00 99.50
Network 8 100.00 100.00 100.00 100.00
Network 9 100.00 100.00 100.00 96.00
Network 10 100.00 100.00 100.00 99.50

�� � 100.00� 0.00 97.80 � 3.95 100.00� 0.00 95.70 � 6.25

Table 4.6: Classi�cation performance (% correct) of the 22 parameter MBNN classi�ers
after 20000 iterations of simulated annealing training on the Riser/Non-riser problem.

exist for this 22 parameter network. Moreover, the simulated annealing algorithm is

4.5 An Extremely Low-dimensional Solution to the R/NR Problem 74

frequently able to �nd them, and avoids the catastrophic failures that can occur when

using backpropagation on functions with non-monotonic derivatives such as Gabors. It

can be seen that a cross-validation algorithm that caused training to stop when 100%

classi�cation of the training and test sets was achieved would give excellent results for

these networks.

The use of simulated annealing for training means that the non-monotonic de-

rivatives of the Gabor functions do not prevent the �lter orientations from changing

signi�cantly during training. It should also be noted that using simulated annealing

results in very much faster training, since no derivatives need to be evaluated. This is

particularly signi�cant in a case such as this where the derivatives of the Gabor layers

involve trigonometric functions, which are expensive to compute.

Figure 4.6 shows the typical variation in training and test set errors and classi�cation

rates during training with simulated annealing. It can be seen that the behaviour

can be very di�erent depending upon the initial parameters of the network, and the

stochastic nature of the algorithm. Table 4.7 shows the �nal percent errors for the

networks.3 Comparison with Table 4.6 indicates that in all cases where the �nal error

on the training set was below 10%, 100% classi�cation of the test set was achieved at

some stage during training. Since simulated annealing will �nd the minimum on the

training data given a su�ciently long annealing schedule and a su�ciently high initial

temperature, it seems that a 100% correct solution should always be able to be found

for such networks.

Training Data Test Data

Network 1 11.05476 16.26678
Network 2 0.00015 0.49714
Network 3 10.39662 15.41420
Network 4 0.00006 1.27624
Network 5 0.00079 0.06715
Network 6 11.13610 12.36650
Network 7 0.00024 0.30148
Network 8 0.00016 0.00016
Network 9 0.00058 4.00381
Network 10 0.89500 1.37818

Table 4.7: Final percent errors of the 22 parameter MBNN classi�ers after 20000 iter-
ations of simulated annealing training on the Riser/Non-riser problem.

3i.e. as a percentage of the maximum possible error, corresponding to \exactly wrong" classi�cation
of all patterns.

4.5 An Extremely Low-dimensional Solution to the R/NR Problem 75

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
rc

en
ta

ge
 C

or
re

ct
 /

Pe
rc

en
ta

ge
 E

rr
or

Number of Training Passes

Xnet Output: PH_gabor_2_2_05.out

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

(a) Initial Gabor Orientations Good

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pe
rc

en
ta

ge
 C

or
re

ct
 /

Pe
rc

en
ta

ge
 E

rr
or

Number of Training Passes

Xnet Output: PH_gabor_2_2_06.out

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

(b) Initial Gabor Orientations Poor

Figure 4.6: Variation in training and test set errors and classi�cation performance
during training of a 22 parameter MBNN with simulated annealing.

4.5 An Extremely Low-dimensional Solution to the R/NR Problem 76

4.5.2 Modi�ed Backpropagation

A further 10 networks of this architecture, with the same initializations as those de-

scribed above, were trained using the modi�ed backpropagation algorithm. The �rst

point to note, before considering the results in detail, is that this training was at least

one (quite possibly two) orders of magnitude slower than that using simulated anneal-

ing. This may be attributed several causes. Most obviously, there is the computational

cost due to the need to calculate derivatives containing trigonometric functions. The

convergence of the algorithm was also often very slow, which may also be attributed to

the sinusoidal terms in the derivatives. The error surface is far from monotonic, and a

gradient descent algorithm such as backpropagation is not appropriate.

Best Final (25000 iterations)
Training Data Test Data Training Data Test Data

Network 1 100.00 99.50 100.00 93.50
Network 2 100.00 99.00 100.00 99.00
Network 3 100.00 90.00 100.00 89.50
Network 4 90.00 80.50 90.00 80.00
Network 5 100.00 96.00 100.00 96.00
Network 6 100.00 97.50 100.00 93.50
Network 7 90.00 82.50 90.00 76.50
Network 8 100.00 93.00 100.00 93.00
Network 9 100.00 93.50 100.00 85.00
Network 10 90.00 81.00 90.00 79.50

�� � 97.00� 4.48 91.25 � 7.05 97.00� 4.58 88.55 � 7.40

Table 4.8: Classi�cation performance (% correct) of the 22 parameter MBNN classi�ers
after 25000 iterations of backpropagation training on the Riser/Non-riser problem.

The results appear in Table 4.8. As would be expected, the training set is learnt

perfectly in nearly every case. The exceptions, such as Network 7, experienced a cat-

astrophic failure during training, as can be seen in Figure 4.7. This sort of failure

was responsible for the poorly-performed MBNNs reported in x4.3, and it seems that

this simple modi�cation of backpropagation is, in general, inadequate for weighting

functions such as the Gabor.

Even in those instances in which such catastrophic failure did not occur, in no case

was the �nal test set performance 100%. This may be partially attributed to over�tting

of the training data. Figure 4.8 shows that the �nal test set performance for Network 1

was 93.5% after 25000 iterations, whereas it had been 99.5% after 1840 iterations.

This also indicates the degree of variation in the number of iterations required for

convergence between di�erently initialized networks.

The statistics show that the overall performance was signi�cantly worse for the

networks training using the modi�ed backpropagation algorithm than for those trained

4.6 Chapter Summary 77

0

20

40

60

80

100

0 5000 10000 15000 20000 25000

Pe
rc

en
ta

ge
 C

or
re

ct
 /

Pe
rc

en
ta

ge
 E

rr
or

Number of Training Passes

Xnet Output: PH_gabor_2_2_bp_07.out

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

Figure 4.7: Catastrophic failure during training of a 22 parameter MBNN with back-
propagation.

using simulated annealing. Given the non-monotonic structure imposed on the error

surface this is unsurprising.

4.6 Chapter Summary

In this chapter we have introduced a particular form of MBNN: the MBNN in which

weights are determined by parameterized weighting functions of the form described in

x4.1. We have shown how the backpropagation algorithm can be naturally extended

to apply to networks of this form, enabling the dimensionality of the parameter space

searched during training to be much smaller than the number of connections in the

network. Experimental results, however, indicate that a stochastic training algorithm,

such as simulated annealing, is more appropriate in many cases.

The application of such networks was demonstrated on several tasks, indicating that

they are indeed trainable, and that better invariance performance is achieved than with

prior TNN techniques. Moreover, this is achieved at a greatly reduced computational

cost, in terms of both the size of the required training set and the complexity of the

search problem.

In the chapters ahead, a new shift-, rotation- and scale-invariant characteristic of

two-dimensional contours is introduced, which is particularly suited to being embedded

in a MBNN, since it involves inherently local calculations. It will be shown that another

type of MBNN can be constructed that classi�es on the basis of this characteristic, and

4.6 Chapter Summary 78

0

20

40

60

80

100

0 5000 10000 15000 20000 25000

Pe
rc

en
ta

ge
 C

or
re

ct
 /

Pe
rc

en
ta

ge
 E

rr
or

Number of Training Passes

Xnet Output: PH_gabor_2_2_bp_01.out

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

Figure 4.8: Over�tting of training data, resulting in diminished test set performance
during training of a 22 parameter MBNN with backpropagation.

that such networks can be successfully applied to invariant optical character recognition.

5. Invariance Signatures 79

Chapter 5

Invariance Signatures

The aim of any invariant pattern recognition technique is to obtain a representation

of the pattern in a form that is invariant under some speci�ed transformations of the

original image. Ideally, such a technique would produce a representation of the pattern

which was not only invariant, but which also uniquely characterized the input pattern.

This goal is not necessarily realisable, nor is it always as desirable as it might seem.

In many pattern recognition problems, the aim is to produce a system which classi�es

input patterns as belonging to a particular class, rather than to identify uniquely every

single input pattern presented. In such cases a unique representation for each and every

possible input pattern can actually be a disadvantage. What is required is an invariant

representation that retains enough information for distinct classes to be distinguished.

It is by no means necessary that members of the same class be distinguishable in the

invariant representation used.

Invariant pattern recognition has a long history, as was discussed in Chapter 2.

One approach is to study the ways in which local features change under the action of

global transformations of the image. Such considerations lead naturally to the study of

Lie transformation groups, and many, varied invariant pattern recognition techniques

make use of the Lie theory [Ho�man, 1966; Ho�man, 1978; Ferraro and Caelli, 1988;

Cole, Murase and Naito, 1991; Rubinstein et al., 1991; Segman et al., 1992; Squire and

Caelli, 1995].

In this chapter the theory of Lie transformation groups will be developed, and their

signi�cance for invariant pattern recognition made clear. A new shift-, rotation- and

scale- invariant function of a two-dimensional contour with respect to a given Lie trans-

formation group, the Invariance Measure Density Function, will then be derived. It will

be shown that several such functions can be combined to yield an Invariance Signature

for the contour. This Invariance Signature has several properties that make it attrac-

tive for implementation in a MBNN: it is based on local properties of the contour, so

initial calculations are inherently parallel; it is statistical in nature, and its resolution

5.1 Lie Transformation Groups and Invariance 80

can be chosen at the designer's discretion, allowing direct control over the dimensional-

ity of the network implementation. However, the use of the Invariance Signature is by

no means limited to neural network implementations. Whilst the Invariance Signature

is not \strongly-invariant" in the sense discussed in x2.1 (patterns are not uniquely

represented), it will be shown in Chapter 7 that classes of patterns are represented

su�ciently di�erently for optical character recognition applications.

5.1 Lie Transformation Groups and Invariance

5.1.1 De�nition of a Group

A group is a set of elements and an associated operation which maps elements of the

group into each other. Consider a set of elements G and an associated operation �.
Let the elements of G be denoted by �1; �2; : : : . For G to be a group, it must have the

following properties:

1. Closure:

8 �i; �j 2 G; �i � �j 2 G (5.1)

2. Associativity:

8 i; j; k; (�i � �j)� �k = �i � (�j � �k) (5.2)

3. Identity Element I:

9 I : 8 � 2 G; �� I = � (5.3)

4. Inverse Elements:

8 � 2 G; 9 ��1 : �� ��1 = I (5.4)

5.1.2 One Parameter Lie Groups in Two Dimensions

An important class of groups for pattern recognition is the Lie transformation groups. A

Lie group is a continuous transformation group with a di�erentiable structure. For two-

dimensional invariant pattern recognition, the most interesting groups are the one-pa-

rameter Lie transformation groups de�ned on the plane. These transformation groups

include rotation, dilation and translation: transformations with respect to which invari-

ance is often desired in pattern recognition systems. These are smooth transformations

5.1 Lie Transformation Groups and Invariance 81

of the form

x0 = �(x; y; �)

y0 = �(x; y; �):
(5.5)

The parameter � determines which element of the group the transformation is. For

instance, if �0 corresponds to the identity element, we have

x0 = �(x; y; �0) = x

y0 = �(x; y; �0) = y:
(5.6)

There is a vector �eld ~g =
h
gx gy

iT
associated with each Lie group G. This

vector �eld gives the direction in which a point (x; y) is \dragged" by an in�nitesimal

transformation under the action of the group. It is given by

gx(x; y) =
@�

@�

����
�=�0

gy(x; y) =
@�

@�

����
�=�0

:

(5.7)

This vector �eld ~g allows an operator LG to be de�ned,

LG = gx
@

@x
+ gy

@

@y
: (5.8)

The operator LG is called the generator of the transformation group G. It is called the

generator of the group because it can be used to construct the �nite transformation

corresponding to the in�nitesimal dragging described in Equations 5.7. This is done

by \summing" the repeated applications of the in�nitesimal transformation.

5.1.3 From In�nitesimal to Finite Transformations

Let us consider the case in which we know the direction of the vector �eld specifying

the in�nitesimal transformation at each point, as given by Equations 5.7, and we wish

to construct the Equations 5.5 specifying the �nite transformation. We will consider

the transformation of x in detail. For a small change in the group parameter from the

identity element, � = �0 +��, we can approximate the change in x by

x0 = x+�x � x+��
@�

@�

����
�=�0

(5.9)

We now wish to �nd a �nite transformation corresponding to n applications of the

�� transformation. This will approximate the �nite transformation corresponding to

5.1 Lie Transformation Groups and Invariance 82

the group element speci�ed by parameter � = n��. Let xi correspond to the value of

x0 after i applications of the transformation speci�ed by ��. We obtain

x0 = x

x1 = x0 +
�

n
LGx0 =

�
1 +

�

n
LG

�
x

x2 = x1 +
�

n
LGx1

=
�
1 +

�

n
LG

�
x1

=
�
1 +

�

n
LG

�2
x

and thus

xn =
�
1 +

�

n
LG

�n
x:

(5.10)

In the limit as n!1, the approximation becomes exact, and the �nite transformation

is given by

�(x; y; �) = lim
n!1

�
1 +

�

n
LG

�n
x: (5.11)

Similarly,

�(x; y; �) = lim
n!1

�
1 +

�

n
LG

�n
y: (5.12)

5.1.4 Derivation of the Rotation Transformation

As an example, we will derive the rotation transformation from the knowledge only

that each point P should be dragged in a direction at right angles to the line from the

origin to P by the in�nitesimal transformation, as shown in Figure 5.1. We will denote

the rotation group R. The parameter of the group is �. From Figure 5.1, we see that

dx = �rd� sin�
= �

p
x2 + y2d�

yp
x2 + y2

= �yd�: (5.13)

Similarly,

dy = xd�: (5.14)

5.1 Lie Transformation Groups and Invariance 83

φ
x

dx

dy

r

r

P
y

θd

θd

Figure 5.1: In�nitesimal transformation leading to rotation.

The generator of the rotation group R is thus

LR = �y @
@x

+ x
@

@y
: (5.15)

Consequently, the corresponding �nite transformation for x is

�(x; y; �) = lim
n!1

�
1 +

�

n
LR

�n
x: (5.16)

Using the binomial expansion,

�(x; y; �) = lim
n!1

�
1 + n

�

n
LR +

n(n� 1)

2!

�2

n2
L

2
R +

n(n� 1)(n� 2)

3!

�3

n3
L

3
R

+
n(n� 1)(n� 2)(n� 3)

4!

�4

n4
L

4
R + � � �

�
x: (5.17)

We note that

lim
n!1

n!

(n� k)!nk
= 1; (5.18)

and

LRx = �y
L

2
Rx = �x

L
3
Rx = y

L
4
Rx = x; (5.19)

5.1 Lie Transformation Groups and Invariance 84

after which the values repeat. We can therefore write

�(x; y; �) =

�
x� �y � �2

2!
x+

�3

3!
y +

�4

4!
x+ � � �

�
= x

�
1� �2

2!
+
�4

4!
� � � �

�
� y

�
� � �3

3!
+
�5

5!
� � � �

�
= x cos � � y sin �:

(5.20)

Similarly,

�(x; y; �) = x sin � + y cos �: (5.21)

These are the well-known equations describing a rotational transformation by an angle

�. The procedure above can be used to generate the �nite transformation corresponding

to any Lie operator.

5.1.5 Functions Invariant Under Lie Transformations

A function is said to be invariant under the action of a transformation if all points

of the function are mapped into other points of the function by the action of the

transformation on the coordinate system. Such functions are important in pattern

recognition, since it is often desirable to recognize patterns independently of common

image transformations such as rotation, dilation and scaling.

Consider a function F (x; y). We wish to determine its invariance with respect to a

Lie transformation group G. Let

~g(x; y) =
h
gx(x; y) gy(x; y)

iT
(5.22)

be the vector �eld corresponding to the generator of the Lie group, LG. F is constant

with respect to the action of the generator if

LGF = 0: (5.23)

This can be written in terms of the vector �eld as

rF � ~g(x; y) = 0; (5.24)

that is

@F

@x
gx +

@F

@y
gy = 0; (5.25)

5.2 From Local Invariance Measures to Global Invariance 85

or

@F
@x
@F
@y

= �gy
gx
: (5.26)

Now consider a contour C parameterized by t on which F is constant,

8t F (x(t); y(t)) = K: (5.27)

Since F is constant on the contour, we have

dF

dt
=
@F

@x

dx

dt
+
@F

@y

dy

dt
= 0; (5.28)

and consequently

@F
@x
@F
@y

= �dy
dx
: (5.29)

Thus the condition for invariance with respect to the Lie transformation group gener-

ated by LG, given in Equation 5.24, holds if

dy

dx
=
gy
gx
: (5.30)

on the contour.

The condition derived in Equation 5.30 has a very natural interpretation. It says

that a contour is invariant under the action of a group G if the tangent to the contour at

each point is in the same direction as the vector �eld ~g corresponding to the in�nitesimal

transformation that generates the group.

5.2 From Local Invariance Measures to Global Invariance

We now propose a new shift-, rotation- and dilation-invariant signature for contours.

We call this an Invariance Signature, since it is derived from the degree to which a

given contour is consistent with invariance under a set of Lie transformation groups.

5.2.1 The Local Measure of Consistency

We have seen in Equation 5.30 that in order for a contour C to be invariant under a

transformation group G the tangent to the contour must be everywhere parallel to the

vector �eld de�ned by the generator of the group. We now de�ne the Local Measure

of Consistency with invariance under a transformation group G at a point (x; y) on C,

5.2 From Local Invariance Measures to Global Invariance 86

�G(x; y).

�G(x; y) =
����̂(x; y) � ĝG(x; y)��� (5.31)

The absolute value is used because only the orientation of the tangent vector is signif-

icant, not the direction. At each point both the tangent vector to the contour, ~�(x; y)

and the vector �eld ~gG(x; y) are normalized:

ĝG(x; y) =
gx(x; y)̂{ + gy(x; y)|̂

+

q
g2x(x; y) + g2y(x; y)

(5.32)

and

�̂(x; y) =
{̂+ dy

dx |̂

+

r
1 +

�
dy
dx

�2 ; (5.33)

where {̂ and |̂ are unit vectors in the x and y directions respectively. Substituting

Equations 5.32 and 5.33 in Equation 5.31, we obtain

�G(x; y) =
1

+

s
1 +

�
gy(x;y)�gx(x;y)

dy
dx

gx(x;y)+gy(x;y)
dy
dx

�2 (5.34)

5.2.2 The Invariance Measure Density Function

Equation 5.31 is a mapping C 7! [0; 1], which gives a measure of the degree to which

the tangent at each point is consistent with invariance under G. We wish to �nd a

function which characterizes the degree to which the entire contour C is consistent

with invariance under G. Such a function is the density function for the value of

�G in [0; 1], I(�G), which we will call the Invariance Measure Density Function. The

more points from C that are mapped to values close to 1 by Equation 5.31, the more

consistent C is with invariance under G. The shape of I(�G) is a descriptor of C, and we

will show that I(�G) is invariant under rotations and dilations of C (see Theorem 5.1).

Translation invariance is obtained if the origin of coordinates in which �G is calculated

is chosen to be the centroid of C.

It is interesting to note that there is evidence from psychophysical experiments that

a measure of the degree of invariance of a pattern with respect to the similarity group of

transformations (rotations, translations and dilations) is important in human pattern

recognition [Caelli and Dodwell, 1984]. The measure proposed here might be seen as

a mathematical formalization of this notion. Moreover, its implementation in a neural

network architecture is consistent with Caelli and Dodwell's (1984, p. 159) statement

5.2 From Local Invariance Measures to Global Invariance 87

of a proposal due to Ho�man [1966; 1978]:

Ho�man's fundamental postulate was that the coding of orientation at various

positions of the retinotopic map by the visual system, discovered by Hubel and

Wiesel (1962) and others, actually provides the visual system with \vector �eld"

information. That is, the visual system, on detecting speci�c orientation and posi-

tion states (\�/P codes"), spontaneously extracts the path curves (interpreted as

visual contours) of which the local vectors are tangential elements.

First, however, we must establish the form of I(�G). Without loss of generality,

consider C to be parameterized by t : t 2 [t0; T]. The arc length s along C to a given

value of the parameter t is:

s(t) =

Z t

t0

s�
dx

dt

����
�

�2

+

�
dy

dt

����
�

�2

d�: (5.35)

The total length of C is thus S = s(T) =
H
C ds. For well-behaved functions F (x; y),

we can construct s(t) such that we can reparameterize C in terms of s. Thus we can

rewrite Equation 5.31 to give �G in terms of s. For simplicity, we will �rst consider the

case in which �G is a monotonic function of s, as shown in Figure 5.2.

S s

1

ι ∆ι

s

ι G

∆ s

Figure 5.2: Local Measure of Consistency as a function of arc length.

5.2 From Local Invariance Measures to Global Invariance 88

The Invariance Measure Density is:

I (�G) = lim
��G!0

���� �s

S��G

����
=

1

S

���� dsd�G
���� : (5.36)

I (�G) can be interpreted as the probability density function for �G at points

(x(s); y(s)), where s is a random variable uniformly distributed on [0; S]. It is clear that

for the general case, in which �G is not a monotonic function of s, the function could

be broken up into piecewise monotonic intervals, and the contribution to the density

from each interval summed. The general form for a speci�c value �G
0 is therefore

I
�
�G
0
�
=

1

S

X
s2[0;S]:�G(s)=�G0

���� dsd�G
����: (5.37)

Theorem 5.1 The Invariance Measure Density, I (�G), is invariant under transla-

tions, rotations and dilations of the contour C with respect to which it is calculated.

Proof That I (�G), de�ned in Equation 5.37, is invariant under translations of the

contour C is trivial, since, as de�ned in x5.2.2, �G is calculated with the origin at the

centroid of the contour C. Rotation and dilation invariance can be proved by construc-

tion. Since the transformations for rotation and dilation in the plane commute,1 we can

consider a two-parameter Abelian group corresponding to a rotation by an angle � and

a dilation by a positive factor �. The coordinates x and y are transformed according

to

x0 = � (x cos � � y sin �)

y0 = � (x sin � + y cos �) :
(5.38)

We are interested in the relationship between the arc length function s(t) de�ned in

Equation 5.35 for the original parameterized contour (x(t); y(t)) and the new function

s0(t) when the coordinates are transformed according to Equation 5.38. We �nd that

dx0

dt
= � cos �

dx

dt
� � sin �

dy

dt
dy0

dt
= � sin �

dx

dt
+ � cos �

dy

dt
:

(5.39)

1As a consequence of Clairaut's theorem, they commute when the functions to which the trans-
formations are applied are both de�ned and continuous in a neighbourhood around each point of the
function.

5.2 From Local Invariance Measures to Global Invariance 89

Combining these, we �nd that�
dx0

dt

�2

+

�
dy0

dt

�2

=�2

"
cos2 �

�
dx

dt

�2

� 2 cos � sin �
dx

dt

dy

dt
+ sin2 �

�
dy

dt

�2

+sin2 �

�
dx

dt

�2

+ 2 cos � sin �
dx

dt

dy

dt
+ cos2 �

�
dy

dt

�2
#

=�2

"�
dx

dt

�2

+

�
dy

dt

�2
#
: (5.40)

This result can be substituted into Equation 5.35 to obtain

s0(t) = �s(t): (5.41)

This clearly indicates that the total arc length is S0 = �S, and the derivative of s(t) is

also scaled. Substituting into Equation 5.37, we obtain

I 0
�
�G
0
�
=

1

S0

X
�G(s)=�G0

���� ds0d�G

����
=

1

�S

X
�G(s)=�G0

�

���� dsd�G
����

=
1

S

X
�G(s)=�G0

���� dsd�G
����

= I
�
�G
0
�

(5.42)

Q:E:D:

Thus we have demonstrated that I (�G
0) is invariant under rotations and dilations of

the contour C.

Invariance Measure Densities For Speci�c Contours

In order to demonstrate how the Invariance Measure Density de�ned above can be

applied, we will evaluate I (�G) for a speci�c contour.

The Square Let the contour C be a square of side 2L centred at the origin, as

shown in Figure 5.3. We will �nd the Invariance Measure Density for C with respect

to rotation, ICrot (�). By symmetry, we need only �nd ICrot for one side of the square.

On the side indicated by the dashed line in Figure 5.3, x and y can be expressed in

5.2 From Local Invariance Measures to Global Invariance 90

x

L

L

(x(t),y(t))

C

y

Figure 5.3: Square of side 2L.

terms of a parameter t as

x = L

y = t; �L � t � L:
(5.43)

Here the arc length s(t) = t + L, and the total is S = 2L. If _x(t) and _y(t) are the

derivatives of x and y with respect to t, Equation 5.34 can be rewritten as

�Crot(s) =
1r

1 +
h
gy(s) _x(s)�gx(s) _y(s)
gx(s) _x(s)+gy(s) _y(s)

i2 (5.44)

Here we have _x(t) = 0 and _y(t) = 1. Equations 5.15 and 5.43 can be substituted into

Equation 5.44 to give

�Crot(s) =
1q

1 +
�
s�L
L

�2 ; (5.45)

which can be inverted to yield

s = L

1 +

s
1

�2Crot
� 1

!
; (5.46)

5.2 From Local Invariance Measures to Global Invariance 91

di�erentiating,

ds

d�Crot
=

�L
�2Crot

�
1� �2Crot

� : (5.47)

Using Equation 5.37, we arrive at our �nal result:

ICrot (�Crot) =
1

2L

X
�0
Crot

=�Crot

���� ds

d�Crot

����
�0
Crot

=
1

2L
� 2� L

�2Crot
�
1� �2Crot

�
=

1

�2Crot
�
1� �2Crot

� ; �Crot 2
�
1p
2
; 1

�
:

(5.48)

Note that, as required, the scale of the square L does not appear in this result. The

factor of 2 arises because �Crot is a symmetric function of s, so the sum has two terms.

This function, shown in Figure 5.4, is characteristic of the square.

0

5

10

15

20

25

30

0.75 0.8 0.85 0.9 0.95 1

I C
r
o
t
(�
C
r
o
t
)

�Crot

Figure 5.4: Invariance Density Measure with respect to rotation for a square.

5.2.3 Invariance Space: Combining Invariance Measure Densities

We have seen how to compute the Invariance Measure Density Function for a contour

C with respect to invariance under a Lie transformation group G. We now consider the

case in which the Invariance Measure Density Function is calculated with respect to a

number of groups, and the results combined to provide a more complete characterization

5.2 From Local Invariance Measures to Global Invariance 92

of the transformational properties of a contour C. This operation can be considered to

be a mapping of each point from the two dimensional image space to the interior of a

unit hypercube in an n-dimensional invariance space, where each of the n dimensions

corresponds to a particular sort of invariance. Equation 5.49 shows this for the case

of a three-dimensional invariance space, where the dimensions correspond to the Local

Measure of Consistency � with respect to the transformations of rotation, dilation and

translation:

(x; y) 7!
h
�rot �dil �trans

iT
: (5.49)

The distribution of points in this invariance space is characteristic of the contour C.

This particular three-dimensional invariance space is the one that will be used for

the experimental application of Invariance Signatures. Since each of the component

invariance measure densities is invariant, this n-dimensional Invariance Signature is

invariant under rotations, dilations, translations and re
ections of the input image.

Vector Fields Corresponding to Rotation, Dilation and Translation Groups

The vector �elds for the generators of the transformation groups for rotation, dilation

and translation are given in normalized form. All can be derived using Equation 5.7:

for rotation invariance

~grot(x; y) =
1p

x2 + y2

h
�y x

iT
; (5.50)

and for dilation invariance

~gdil(x; y) =
1p

x2 + y2

h
x y

iT
: (5.51)

The translation invariance case is somewhat di�erent. In fact, the term \translation

invariance" is something of a misnomer. What is in fact measured in this case is

the degree to which the contour is \linear". The vector �eld used is constant for all

(x; y), and the direction is determined by �nding the eigenvector corresponding to the

dominant eigenvalue, ~e1, of the coordinate covariance matrix of all the points in the

contour.2 The direction of this eigenvector is the principal direction of the contour.

To place this in the same context as the previous two cases, the \translation in-

variance" factor is a measure of the degree to which the tangents at each point in the

contour are consistent with a function invariant under translation in the direction of the

vector ~e1. Since ~e1 is calculated from the image each time it is required, this measure

is invariant under rotations, dilations and translations of the image. The vector �eld

2~e1 is chosen to be a unit vector.

5.2 From Local Invariance Measures to Global Invariance 93

for the translation invariance case is thus:

~gtrans(x; y) =
h
e1x e1y

iT
(5.52)

Uniqueness

It should be noted that this representation of the image is not unique, unlike some

previous integral transform representations [Ferraro and Caelli, 1994]. The combination

of individual Invariance Measure Densities into an Invariance Space does, however,

increase the discriminant properties. As an example, removing two opposite sides of a

square will not alter its rotation and dilation Invariance Signatures, but it will change

the translation Invariance Signature. Likewise, a single straight line has the same

translation Invariance Signature as any number of parallel straight lines, however they

are spaced. The rotation and dilation Invariance Signatures, however, are sensitive to

these changes.

5.2.4 Discrete Invariance Signatures

For any computer application of Invariance Signatures, a discrete version must be

developed. The natural choice is the frequency histogram of the value of �G. For a

continuous contour, this is obtained by dividing the interval [0; 1] into n \bins" and

integrating I(�G) over each bin. For bins numbered from b0 to bn�1, the value in bin k

is thus

bk =

Z k+1
n

k
n

I(�G)d�G: (5.53)

Since I(�G) is a probability density function, the sum of the values of the bins must be

one.

For a system using images of sampled contours, a true frequency histogram of the

estimated local measures of consistency may be used. The designer of a system using

these Invariance Signatures must choose the number of bins n into which the data is

grouped. It will be seen in Chapter 7 that this choice is not arbitrary for real systems.

An example of a sampled contour and the estimated tangent vectors at each point

is shown in Figure 5.5. The circle indicates the centroid of the contour, and the dashed

line shows the direction of ~e1. The estimated discrete Invariance Signatures are shown

in Figure 5.6, for 20 bins.

It would be expected that this \
ower"-shaped contour would have Invariance Sig-

natures which re
ect a quite strong dilation-invariant component corresponding to the

approximately radial edges of the \petals", and also a signi�cant rotation-invariant

component due to the ends of the petals which are approximately tangential to the

5.2 From Local Invariance Measures to Global Invariance 94

1. Original Contour 2. Tangent Estimates

Figure 5.5: Example of a sampled contour and its estimated tangents.

1. Rotation 2. Dilation 3. Translation

Figure 5.6: 20 bin discrete Invariance Signatures for the contour in Figure 5.5.

radial edges. This is indeed what is observed in Figure 5.6.

6. A Neural Network for Computing Invariance Signatures 95

Chapter 6

A Neural Network for

Computing Invariance Signatures

6.1 The Invariance Signature Neural Network Classi�er

We propose a Model-Based Neural Network to compute the discrete Invariance Sig-

nature of an input pattern, as described in x5.2.4, and to classify the pattern on that

basis. This MBNN consists of a fairly complex system of neural network modules,

some hand-coded and some trained on sub-tasks. A schematic diagram is shown in

Figure 6.1. This system, �rst described in Squire and Caelli (1995), will be referred to

as the Invariance Signature Neural Network Classi�er (ISNNC).

Whilst the ISNNC appears complex, it retains the basic characteristics of a tra-

ditional feed-forward neural network. It consists entirely of simple nodes joined by

weighted connections.1 Each node i in the network computes the sum of its j weighted

inputs, neti,

neti =
X
j

wijxj : (6.1)

This is then used as the input to the transfer function f of the node, which is either

linear, f(neti) = neti, or the standard sigmoid,

f(neti) =
1

1 + e�neti
: (6.2)

The only departure from a traditional neural network at runtime is that some of the

1with the exception of the Dominant Image Orientation Unit for which a neural network solution
is still to be developed.

6.1 The Invariance Signature Neural Network Classi�er 96

Centroid Image

Invariant Vector
Field Generator Extractor

Local Orientation

Rotation Invariance
Signature Signature

Dilation Invariance
Signature

Translation Invariance

Conventional Neural
Network Classifier

in Input Image
Number of Ones

Computation

Input Image

n

Centroid Image

Rot x Rot y Dil x Dil y Trans x Trans y

Dominant Image
Orientation Unit

Y ComponentX Component

Dot Product Dot Product Dot Product

Rotation Invariance
Image

Dilation Invariance
Image

Binning Unit Binning Unit Binning Unit

Translation Invariance
Image

Final Classification

Figure 6.1: Invariance Signature-based contour recognition system.

connection weights are calculated by a node higher up in the network. We call these

dynamic weights. The presence of dynamic weights allows the ISNNC to compute dot

products,2 and also for some nodes to act as gates controlling whether or not the output

of a node is transmitted. Since connection weights in any implementation of a neural

network are no more than references to some stored value, this should not present

any di�culty.3 Alternatively, the same functionality can be achieved by allowing a

new class of node which multiplies (possibly weighted) inputs. Nodes of this type are

2The calculation of dot products, for example, is achieved by having the outputs of one layer provide
the weights on connections to another layer.

3The aim of our research with MBNNs has never been biological plausibility. Perhaps this runtime
weight calculation can be thought of as real-time, rapid, accurate training.

6.1 The Invariance Signature Neural Network Classi�er 97

a component, for instance, of Higher Order Networks [Perantonis and Lisboa, 1992;

Redding et al., 1993; Schmidt and Davis, 1993; Spirkovska and Reid, 1994; Delopoulos

et al., 1994].

The ISNNC consists of a number of distinct levels. Data is processed in a feed-for-

ward manner, and computation at a given level must be completed before computation

at the next level can begin. Each of the following sections describes computation at a

particular level.

6.1.1 Lie Vector Field Generation

Calculation of a Centroid Image

The �rst step in creating the vector �elds corresponding to the generators of the rotation

and dilation groups is to compute the coordinates of the centroid of the image, since,

as seen in x5.2.2, this must be the origin of coordinates. This is done using a neural

module which takes as its input a binary image, and outputs an image of the same size

which is zero everywhere except at the centroid, where it is one. In Figure 6.1 this is

labeled \Centroid Image". The weights of the Centroid Image Computation module

are entirely hand-coded.

A quantity needed for this operation, and also later in the ISNNC, is Non, the total

number of \on" pixels in the input binary image I (xi; yj). This is given by

Non =
NxX
i=1

NyX
j=1

I (xi; yj): (6.3)

This can easily be computed by a single node with a linear transfer function which has

inputs from all input nodes with weights of 1. In fact, the value used in later levels

of the ISNNC is 1
Non

. Since the size of the input image is �xed, it is trivial to build a

neural module which interpolates the function f(x) = 1
x with any desired accuracy for

the integer values fx : x 2 [0; NxNy]g. Bulsari (1993), for instance, demonstrates how

to construct piecewise constant approximations to problems such as this with neural

networks. From now on it will be assumed that the value 1
Non

is available.

The equations for the coordinates, (�x; �y), of the centroid of I (xi; yj) are

�x =
1

Non

NxX
i=1

NyX
j=1

I (xi; yj)xi

�y =
1

Non

NxX
i=1

NyX
j=1

I (xi; yj) yi
(6.4)

A simple system of two linear neurons can compute each of these quantities. Such a

6.1 The Invariance Signature Neural Network Classi�er 98

module is shown in Figure 6.2. This illustrates the notion of dynamic weights mentioned

above. The weight on the single connection between Node A and Node B is dynamic,

being computed from the number of ones in the input image. The weights on the

connections to Node A are the x-coordinates of each of the input nodes.4 These weights

are �xed during the design process, so there is no sense in which a node needs to \know"

what its coordinates are. An identical system is used to compute �y.

Σ

xN

3x

x2

x1

I2

I1

I3

IN

Σ

1
Non

x

Node A Node B

Subsystem
Earlier

Figure 6.2: �x module.

Once �x and �y have been calculated, the Centroid Image can be generated. This is

done using a pair of nodes for each input node, as shown in Figure 6.3.5 The weights

and inputs to Nodes A and B are set so that they only both \�re" if their coordinate is

within � of the centroid coordinate. Here � = 0:5 was used, since the input nodes were

assigned unit spacing. A neural AND of these nodes is then calculated by Node C.

This results in two images, one for the x coordinate and one for y. Each has a

straight line of activation corresponding to the centroid value for that coordinate. A

neural AND of these images is computed, giving the �nal output Centroid Image, IC ,
in which only the centroid node is one.

Gating of Vector Fields

Once the Centroid Image has been calculated, it is used to produce the rotation and

dilation vector �elds, four images in all. The weights from the Centroid Image are all

derived from equations 5.50 and 5.51. Each centroid image node has weights going

to all the (linear) nodes in each vector �eld component layer. Each weight has the

4Not to be confused with their output values, which are also often denoted as xi or yi.
5The parameter � in these �gures e�ectively determines the gain of the sigmoids, since it scales all

weights. In this study it was set to 100.

6.1 The Invariance Signature Neural Network Classi�er 99

Σ

Σ
x)θ+i

α(

Σ
α

α

2

x

1

−3α

α

−α

x)θ+i-(α

Node B

Node C

Node A

{0 otherwise

1 if |x - x| < θi

{

Neural AND subsytem

Figure 6.3: Coordinate matching module for node xi. Output 1 when: jxi � �xj < �.

value appropriate for the vector �eld at the destination node if the source node is the

centroid. Since all nodes of the Centroid Image are zero except for the centroid node

which is one, only the weights from the centroid node contribute to the vector �eld

component images. Thus, weights corresponding to the vector �elds for all possible

centroid positions are present in the network, but only the appropriate ones contribute.

Equation 6.5 shows the function computed by a node (k; l) in the rotation invariance

vector �eld x-component image:

Rotx(k;l) =
xmaxX
i=0

ymaxX
j=0

w(i;j)(k;l)IC(i;j)

w(i;j)(k;l) =
�(j � l)q

(j � l)2 + (i� k)2
:

(6.5)

Note that it does not matter which node is chosen as the origin of coordinates in

each layer when the weights are set, only that it is consistent between layers. Similar

functions for setting weight values, derived from Equations 5.50 and 5.51, are used for

the other three vector component images.

6.1.2 Local Orientation Extraction

A Tangent Estimate

In order to compute the Invariance Signature for an image, it is necessary to estimate

the tangent vector at each point of the contour, since the mapping to invariance space

requires the dot product of this with the three vector �elds described in x5.2. A simple

and robust estimate of the tangent vector at a point is the eigenvector corresponding

to the largest eigenvalue of the covariance matrix of a square window centred on that

6.1 The Invariance Signature Neural Network Classi�er 100

point.

The size of the window chosen de�nes the number of orientations possible. Fig-

ure 6.4 shows the orientation of the tangent estimates for an image of a circle for both

3 � 3 and 5 � 5 windows, calculated exactly. It is clear that the tangent estimates

(a) Original Image (b) 3� 3 Window (c) 5� 5 Window

Figure 6.4: Tangent estimation with varying window sizes, using the eigenvector cor-
responding to the largest eigenvalue of the covariance matrix.

calculated using the 5� 5 window are better than those from the 3� 3, but this comes

at a computational cost, since the number of calculations is proportional to the square

of the window size. Moreover, the \best" choice of window size depends upon the scale

of the input contour. If the window size becomes large compared to the scale of the

contour, the dominant eigenvector of the window's covariance matrix becomes a poor

estimator of the tangent at a point, since the window is likely to include extraneous

parts of the contour. This is clear from the tangent estimates shown in Figure 6.5, which

was calculated with a window size of 35 � 35. Consequently, we choose to use a 3 � 3

window, both for its computational advantage and because it makes no assumptions

about the scale of the input contour.

Discontinuities

Estimating this mapping presents some di�culties for a neural network, as it is not

continuous. There are two discontinuities. The �rst arises when the dominant eigen-

value changes, and the orientation of the tangent estimate jumps by �
2 radians. The

second is due to the
ip in sign of the tangent vector when the orientation goes from �

back to 0.

The �rst discontinuity can be avoided by using a weighted tangent estimate. Rather

than being unity, we let the magnitude of the estimated tangent vector corresponds to

strength of the orientation. Let the eigenvalues of the covariance matrix be �1 and

6.1 The Invariance Signature Neural Network Classi�er 101

Figure 6.5: Tangents estimated with a window size of 35� 35.

�2, where �1 � �2. The corresponding unit eigenvectors are ê1 and ê2. The weighted

tangent vector estimate s is given by

s =

8<:
�
1�

����2�1 ���� ê1 if �1 6= 0;

0 if �1 = 0:
(6.6)

This weighting cause the magnitude of the estimated tangent vector to go to zero as����2�1 ��� ! 1, and thus the �
2 jump is avoided. There is, however, still a discontinuity in

the derivative.

Training a Neural Orientation Extraction Module (NOEM)

The aim, then, is to produce a neural network module to approximate this mapping.

This module is to be replicated across the input layer so that the x and y components of

the tangent vector are estimated everywhere. The result is two images of the same size

as the input layer. The values are gated by the input image (used as dynamic weights),

so that values are only transmitted for nodes corresponding to 1's in the input image.

It was decided to produce this module by training a network on this task.

A training set was produced consisting of all 256 possible binary 3�3 input windows
with a centre value of 1, and, for each, the two outputs given by Equations 6.6. A variety

of networks was produced and trained on this task. The performance measure used,

E, was the ratio of the sum squared error to a variance measure for the training set,

E =

PN
c=1

PM
j=1 (tcj � ycj)

2PN
c=1

PM
j=1

�
tcj � tcj

�2 (6.7)

where N is the number of training exemplars, M the number of nodes in the output

layer, tcj the desired output value of the node and ycj the actual output value.

A variety of standard, single hidden layer backpropagation networks was trained,

6.1 The Invariance Signature Neural Network Classi�er 102

with di�erent hidden layer sizes. It was found that the task could not be learnt without a

signi�cant number of hidden nodes, which is not unexpected for such a highly nonlinear

function. The networks proved very unstable during training, so it was necessary to

use an extremely small learning rate. As would be expected, the accuracy of the

mapping improved with increasing hidden layer size, and the training time increased.

The residual error did not stabilize, but continued to decrease steadily, albeit very

slowly, as training was continued. The �nal accuracy achieved was thus ultimately

determined by how long one was prepared to wait.

For the work reported in Squire and Caelli (1995), a three layer neural network

with a 3� 3 input layer, a 20 node hidden layer, and 2 output nodes was trained using

backpropagation. After 6 � 106 iterations with a learning rate of 0.0005, a value of

E = 3:11% was reached. This was considered su�ciently accurate for this module.

Further investigations, as will be seen in x7.2, have indicated that even such seemingly

small residual errors in the Local Orientation Extraction module can adversely a�ect

�nal classi�cation performance. Consequently, means of improving the accuracy of this

module were sought.

Despite the universality of single hidden layer neural networks, several authors

have indicated that networks with multiple hidden layers can be useful for extremely

nonlinear problems [Sontag, 1992; Sarle, 1994]. Sarle (1994, p. 9) reports:

Although a MLP with one hidden layer is a universal approximator, there exist

various applications in which more than one hidden layer can be useful. Sometimes

a highly nonlinear function can be approximated with fewer weights when multiple

hidden layers are used than when only one hidden layer is used.

This suggested that a more compact solution might be obtained using a network with

two hidden layers. Several standard four-layer networks were trained using backprop-

agation on this problem. It did indeed seem that they converged more rapidly, and

to a smaller residual error. However, as with the single hidden layer networks, they

were very sensitive to the learning rate, suggesting that perhaps a more sophisticated

learning algorithm, such as QuickProp [Fahlman, 1988], would be more appropriate.

After an initial large reduction, the error continued to decrease very slowly throughout

training. The limitation on the �nal accuracy of the approximation appeared to be

how long one was prepared to wait as much as the number of hidden nodes.

It is noted that this is a similar problem to edge extraction, the di�erence being that

edge extraction is usually performed on images containing grey-scale gradients rather

than on a binary, thin contour. Srinivasan, Bhatia and Ong (1994) have developed

a neural network edge detector which produces a weighted vector output very much

like the one described in Equation 6.6. They used an encoder stage which was trained

competitively, followed by a backpropagation-trained stage. The encoder produced

weight distributions closely resembling Gabor �lters of various orientations and phases.

6.2 Calculation of the Local Measure of Consistency 103

It is intended to try to produce a more compact and accurate tangent estimator using

a MBNN incorporating a stage with Gabor weighting functions, as used in Caelli et al.

(1993).

6.2 Calculation of the Local Measure of Consistency

The next stage of the network computes the Local Measure of Consistency of the

tangent estimate at each point of the contour for each of the Lie vector �elds. The

output required is an Invariance Image for each Lie transformation. This is an image

of the same size as the input image, where the value at each point is given by the

absolute value of the dot produce of the estimated tangent vector to the contour and

the Lie vector �eld at that point, as speci�ed in Equation 5.34.

The neural implementation is simple. With reference to Figure 6.1, the x-component

image from the Local Orientation Extractor provides dynamic weights to be combined

with the x-component of each of the Lie vector �elds. The same is done for the y-

components. For each Lie transformation, there is thus layer of neurons which each

have two inputs. The inputs come from the vector �eld images at the same coordinates,

and are weighted by the Local Orientation images, again at the same coordinates. Note

that points corresponding to zeros in the input image have tangent estimates of zero

magnitude and thus make no contribution.

Σ
Rot (i,j)x

θx (i,j)

Rot (i,j)y

θ (i,j)y

θ (i,j) Rot(i,j)

Figure 6.6: Calculation of the dot product of the tangent estimate � and the vector
�eld corresponding to rotation, for the image point at coordinates (i; j).

As an example, consider the subsystem corresponding to the point in the input

image at coordinates (i; j). Figure 6.6 shows the neural implementation of the �rst

stage of the calculation. Modules of this type are replicated for each point in the input

image, and for each Lie vector �eld image. All that then remains is to pass the output

of these modules through modules which calculate the absolute value of their input.

Figure 6.7 shows a neural module which calculates a good approximation of the

6.3 Calculation of the Invariance Signature 104

absolute value of its input. It is less accurate for inputs very close to zero, but in this

application, where possible orientations are coarsely quantized, this does not cause any

problems. This completes the neural calculation of the Local Measure of Consistency

for each contour point with respect to each Lie vector �eld. All that remains is to

combine these into an Invariance Signature.

xx

Σ

Σ

Σ ~

α

−α

1

-1

Figure 6.7: Neural module which calculates the absolute value of its input.

6.3 Calculation of the Invariance Signature

6.3.1 The Binning Unit

The ability of the MBNN approach to produce modules that perform tasks not usually

associated with neural networks is illustrated by the binning unit shown in Figure 6.8.

There is one of these modules for each of the n bins comprising the Invariance Signature

histogram for each invariance class. Each binning module is connected to all the nodes

in the Invariance Image, and inputs to it are gated by the binary input image, so that

only the N nodes corresponding to ones in the input image contribute.

The n bins have width 1
n�1 , since the �rst bin is centred on 0, and the last on 1.6

The system is designed so that Nodes A and B only have an output of 1 when the input

x is within bin i. The condition for x to be in bin i is:

2i� 1

2(n� 1)
< x <

2i+ 1

2(n� 1)
(6.8)

6This is because a bin ending at an extreme of the range would miss contributions from the extreme
value since the edge of the neural bin is not vertical.

6.3 Calculation of the Invariance Signature 105

(2n - 1)
(2i - 1)

−3α

{ Node D

Node C

Node A

Node B

α

α

α

2

1

x
α

−α

Σ
From other

Σ

Σ

(2n - 1)
(2i + 1)α

similar

1

1 if x is in bin i

0 otherwise{
Σ

N

sub-systems

N
1

1
N

Figure 6.8: Neural binning module.

In order to detect this condition, the activations of Nodes A and B are set to:

netA = �x� �(2i� 1)

2(n� 1)
(6.9)

netB = ��x+ �(2i + 1)

2(n� 1)
: (6.10)

The outputs of these nodes go to Node C, which computes a neural AND. Node D

sums the contributions to bin i from all N nodes.

This concludes the calculation of the Invariance Signature. The end result is a

signature which consists of 3n values, where n is the number of bins in the invariance

signature histogram for each invariance class. This calculation has been achieved in

the framework of a modular MBNN, where module functions are strictly de�ned, and

are completely independent of any training data. The building blocks of the individual

modules are restricted to simple summation arti�cial neurons, with either linear or

sigmoidal transfer functions. The sole departure from standard neural network com-

ponents is the introduction of dynamic weights, but, as already stated, these can be

eliminated if product neurons are used, as in Higher Order Neural Networks (see x3.4.3).
This shows the power of the modular approach to neural network design, and demon-

strates that it is possible to design modules which perform tasks that are not often

considered to be part of the neural networks domain, such as binning data.

A �nal module can be added to this network which is trained to classify patterns

on the basis of the 3n-dimensional Invariance Signature, rather than on the input

patterns themselves. Classi�cation performance will thus be guaranteed to be invariant

under shift, rotation and scaling. The advantages of this approach are demonstrated

in Chapter 7.

7. Character Recognition with Invariance Signature Networks 106

Chapter 7

Character Recognition with

Invariance Signature Networks

7.1 Retention of Su�cient Information

In Chapter 5 a new class of invariant signature for two dimensional contours was derived.

It was established that these Invariance Signatures are themselves invariant under ro-

tations, dilations and translations of the contour. In Chapter 6 it was shown that a

MBNN can be constructed which computes these signatures and classi�es contours on

that basis.

It remains now to demonstrate that these Invariance Signatures retain enough in-

formation content to be usable for pattern recognition, and that they are not unduly

sensitive to noisy data such as that encountered in real applications. In order to do

this, the system is applied to the classi�cation of letters of the Roman alphabet, both

for \perfect"1 machine-generated training and test data, and for data gathered using

physical sensors.

7.2 Perfect Data

7.2.1 Departures from Exact Invariance

Despite the fact that Invariance Signatures are provably invariant under rotations,

dilations and shifts in the plane when calculated for a continuous contour, departures

from invariance occur in real applications in several ways. Scanned data contains

random noise from the sensor, though the quality of scanners now available renders this

negligible for this application. More important sources of error are discussed below.

1Throughout this chapter, the term \perfect" will be used to describe data which is both noise-free
and unambiguous.

7.2 Perfect Data 107

Quantization Noise Noise is introduced into the tangent estimation procedure by

the sampling of the contour. Since the estimated tangent orientation is quantized,2

the value of the Local Measure of Consistency �G can be changed when a contour is

quantized at a new orientation. It is possible to compensate partially for this e�ect by

using su�ciently wide bins when calculating the Invariance Signature I(�G), but there

will still be errors when the change in estimated orientation moves the resultant �G

across bin boundaries.

Ambiguous Characters In many fonts some letters are rotated or re
ected versions

of other letters, such as fb, d, p, qg and fn, ug in many sans serif fonts. In fonts

with serifs, the serifs are often so small that they make a negligible contribution to

the Invariance Signature. Consequently, it is impossible to classify isolated characters

into 26 classes if shift, rotation, scale and re
ection invariance is desired. Admittedly,

re
ection invariance is not usually desired in a character recognition system, but it is an

unavoidable characteristic of the ISNNC. In commercial optical character recognition

systems, context information is used to resolve ambiguous letters,3 which occur even in

systems without inherent invariances. Such an approach would be equally applicable

as a post-processing stage for the ISNNC system.

7.2.2 The Data Set

These e�ects can be avoided by using a computer to produce a \perfect" data set, which

is free from quantization noise and contains no letters which are transformed version

of others in the data set. Such a data set can be used to demonstrate that Invariance

Signatures retain su�cient information for classi�cation in the absence of noise, and

these results can be used as a basis for assessing the performance of the system on real

data.

A training data set was created using a screen version of the Helvetica font. Only

the letters fa, b, c, e, f, g, h, i, j, k, l, m, n, o, r, s, t, v, w, x, y, zg were used, so that

ambiguity was avoided. An 18 � 18 binary image of each letter was produced. This

training data set is shown in Figure 7.1.

A \perfect" test data set was created by computing re
ected and rotated versions

of the training data, where all rotations were by multiples of �
2 radians, so that there

was no quantization error. This test data set is shown in Figure 7.2.

2See x6.1.2.
3i.e. surrounding letter classi�cations and a dictionary of acceptable words.

7.2 Perfect Data 108

Figure 7.1: Training set of canonical examples of unambiguous characters.

7.2.3 Selected Networks Applied to this Problem

Simulations indicated that the training set shown in Figure 7.1 could be learnt by a

neural network with no hidden layer: it is a linearly separable problem [Minsky and

Papert, 1969]. It was assumed that this would also be true of the Invariance Signatures

calculated from these data.4 Consequently, two di�erent network architectures were

constructed for comparison.5 The �rst was a TNN with a 18 � 18 input layer, no

hidden layers, and a 1 � 22 output layer. The other was an ISNNC, with an 18 � 18

input layer for the Invariance Signature calculation stage. The Invariance Signature

was calculated using 5 bins for each Lie transformation, meaning that the Invariance

Signature layer had 3� 5 nodes. This was connected directly to a 1� 22 output layer,

with no intervening hidden layers, forming an linear classi�er sub-network.

7.2.4 Reduction of Data Dimensionality

It should be noted that although the Invariance Signature Calculation stage of the

ISNNC has to be run every time a new pattern is to be classi�ed at run time, it is only

necessary to calculate the Invariance Signatures of the training and test data once.

The �nal classi�cation stage of the ISNNC can then be trained as a separate module.

This can lead to an enormous reduction in the time taken to train a network, since the

number of training passes required to learn a large and complex data set is typically

4This was con�rmed by subsequent experiments.
5All networks described were constructed, trained and evaluated using the Xnet simulator described

in Appendix B.

7.2 Perfect Data 109

1. a 2. b 3. c

4. e 5. f 6. g

7. h 8. i 9. j

10. k 11. l 12. m

13. n 14. o 15. r

16. s 17. t 18. v

19. w 20. x 21. y

22. z

Figure 7.2: Test set of ideally shifted, rotated and re
ected letters.

order 102 to 103, and the total number of parameters np in a TNN is:

np =

N�1X
i=1

(nodes in layer)i�1 � (nodes in layer)i (7.1)

where N is the total number of layers, and i is the layer number, where the input

layer is labeled 0. The iteration time during training is proportional to np, so, for this

example, each training iteration for the Invariance Signature classi�cation stage will be
18�18
3�5 = 21:6 times faster than that for the TNN.

The calculation of the Invariance Signatures is admittedly time-consuming, but the

time is made up many times over during training when the input image size is large.

In real applications, the image size is typically larger than the 18 � 18 image used

in this demonstration. ISNNC systems can therefore provide an extremely signi�cant

reduction in the dimensionality of the training data, and a corresponding reduction

in the time taken to train the classi�cation network. Moreover, the simulation of

the ISNNC on a sequential computer is unable to take advantage of the inherently

7.2 Perfect Data 110

parallel, local computations that characterize many of the ISNNC modules. A parallel

implementation would largely alleviate the time-consuming nature of the Invariance

Signature calculation.

7.2.5 Perfect and Network-Estimated Local Orientation

Since the neural network implementation of the Local Orientation Unit described in

x6.1.2 still had some residual error, two versions of the Invariance Signature training

and test data were created, one with the local orientation at each point calculated

directly from the covariance matrix eigenvectors, and the other using the neural network

module. Results from these data sets will be compared to evaluate the importance of

accurate orientation extraction in the neural module.

Ten examples of each network were made, each with a di�erent initialization of

parameters, so that it could be ensured that the results were reproducible. The TNNs

and the ISNNC linear classi�er modules were all trained using the backpropagation

algorithm, with the weight update equation shown in Equation 4.14. The parameters

were � = 0:5 and � = 0:5 for the Invariance Signature classi�cation modules, and

� = 0:025 and � = 0:5 for the TNNs. The di�erence in � is to compensate for the

di�erent fan-in to the output nodes in the two networks. Training was continued for

1000 iterations. A network was deemed to have classi�ed a pattern as belonging to

the class corresponding to the output node which had the highest output value, so no

patterns were rejected.

Results for Traditional Neural Networks

The results obtained with TNNs are summarized in Table 7.1. It is clear that the TNNs

do not exhibit transformation invariance. They could not be expected to do so, since

no transformed versions of the patterns were included in the training data.

It might be expected that the fact that the �nal performance of the TNNs is better

than chance (1
22 = 4:5454%) is because some of the transformations of the training

data resulted in patterns almost identical to the untransformed training pattern for

some of the highly symmetrical letters in the training set (e.g.o, s, x and z). Analysis

of which test patterns were classi�ed correctly, however, shows that this is not the

case. The 12 correctly classi�ed test patterns are shown in Figure 7.3. No reason for

these particular patterns being classi�ed correctly is obvious. It is well-known that the

\rules" generated by TNNs are hard to extract, although progress has been made in

that area [e.g. Wiles and Ollila, 1993; Wiles and Elman, 1995]. What is clear, however,

is that chance must play a part in some of these classi�cations, for instance i4, which

shares no \on" pixels with the training example of i (see Figures 7.1 and 7.3).

Table 7.2 shows that marginally better performance on the test data could have

7.2 Perfect Data 111

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 100.00 14.773 100.00 13.636
Network 2 100.00 14.773 100.00 13.636
Network 3 100.00 15.909 100.00 13.636
Network 4 100.00 14.773 100.00 13.636
Network 5 100.00 14.773 100.00 13.636
Network 6 100.00 15.909 100.00 13.636
Network 7 100.00 14.773 100.00 13.636
Network 8 100.00 14.773 100.00 13.636
Network 9 100.00 14.773 100.00 13.636
Network 10 100.00 14.773 100.00 13.636

�� � 100.00 � 0.000 15.000 � 0.454 100.00 � 0.000 13.636 � 0.000

Table 7.1: Classi�cation performance (% correct) of traditional neural network classi-
�ers trained for 1000 iterations with the data shown in Figure 7.1 and tested with the
\perfect" data set in Figure 7.2.

f1 i2 i4 j1 k1 k4

l1 m1 n1 n3 n4 y1

Figure 7.3: Test patterns classi�ed correctly by the TNNs.

been achieved by employing an early-stopping scheme in which training was stopped

when classi�cation performance on the test set started to deteriorate. This would,

however, have been at the cost of less than 100% correct performance on the training

data. It should be noted that the error on the test set, as de�ned in Equation 1.3,

decreased throughout the entire 1000 iterations. This indicates that an early-stopping

scheme based on the test set error would fail to improve classi�cation performance in

this case. Figure 7.4 shows how the classi�cation performances and errors typically

varied during training.

It should be acknowledged that the TNNs could not really be expected to perform

better than chance on this test set given the training set used. Their architecture

provides no invariances, and generalization cannot be expected unless multiple trans-

formed versions of the patterns are included in the training set. This argument can be

used against all the comparisons between TNNs and MBNNs in this thesis: they are

not really fair. Nevertheless, these comparisons between naive applications of TNNs

and speci�cally-designed MBNNs demonstrate that MBNNs can perform successfully

using training sets completely inadequate for TNNs. Moreover, these MBNNs are of

7.2 Perfect Data 112

% Correctly Classi�ed
Iteration Training Data Test Data

Network 1 86 100.00 14.773
Network 2 33 95.455 14.773
Network 3 1 90.909 15.909
Network 4 85 100.00 14.773
Network 5 94 100.00 14.773
Network 6 1 90.909 15.909
Network 7 95 100.00 14.773
Network 8 1 95.455 14.773
Network 9 86 100.00 14.773
Network 10 19 95.455 14.773

�� � 50 � 40 96.818 � 3.550 15.000 � 0.454

Table 7.2: Performance at iteration at which best performance on test data occurred
for traditional neural network classi�ers trained with the data shown in Figure 7.1 and
tested with the \perfect" data set in Figure 7.2.

lower dimensionality than the TNNs. Providing with the TNNs with su�ciently large

training sets would only make their training still more computationally-expensive, with

no guarantee of invariant performance.

Results with Perfect Local Orientation

The results for the ten ISNNCs which used perfect Local Orientation Extraction are

shown in Table 7.3. The average number of iterations for 100% correct classi�cation to

be achieved was 220. Since the problem is linearly-separable, it could in fact be solved

directly, using a linear equations technique such as singular-valued decomposition [Press

et al., 1992]. Since weights may set by any method at all in the MBNN paradigm, this

makes the comparison of convergence times somewhat irrelevant. Nevertheless, the

MBNN modules, although taking, on average, 4.4 times as many iterations to converge

as the TNNs, were still 4.9 times faster to train, due to their lower dimensionality, as

discussed in x7.2.4.
As expected, the ISNNCs generalize perfectly to the transformed images in the

test set. The network architecture constrains the system to be shift- rotation-, scale-

and re
ection-invariant in the absence of quantization noise, so this is no surprise.

Importantly, the result indicates that su�cient information is retained in the 5 bin

Invariance Signatures for all 22 unambiguous letters of the alphabet to be distinguished.

Inspection of the percentage sum squared error values after each iteration indicated that

the error on the test set was indeed identical to that on the training set: for perfect

data, the ISNNC produces perfect results.

7.2 Perfect Data 113

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge
 C

or
re

ct
 /

Pe
rc

en
ta

ge
 E

rr
or

Number of Training Passes

Xnet Output

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

Figure 7.4: Classi�cation performance and errors of TNN 2 during training.

Results with Network-Estimated Local Orientation

The perfect results above were obtained using a hybrid system, which used a module

which was not a neural network to calculated the local orientation at each point. The

neural module for local orientation extraction used here was trained using backpropaga-

tion until 98.93% of the variance in the training data was explained (see Equation 6.7).

The Invariance Signatures for the test and training data were calculated using the

system incorporating this module, and the classi�cation module was then trained sep-

arately using these Invariance Signatures. Systems were produced with both 5 and 10

bin Invariance Signatures. The results obtained are shown in Tables 7.4 and 7.5.

The misclassi�ed patterns for the 5 bin ISNNCs were those shown in Figure 7.5. t1

and t2 were classi�ed as f, which is understandable, since there is very little di�erence

indeed between the patterns. t4 was misclassi�ed as a. All ten networks had these

same misclassi�cations.

These data show that small residual error in the neural Local Orientation Extrac-

tion module does cause a degradation in the transformation invariant classi�cation

performance of the ISNNCs. These results are, however, still far superior to those

for the TNNs. Moreover, there is no reason that the Local Orientation Extraction

module could not be trained further. It is to be expected that the invariant classi�ca-

tion performance would continue to approach 100% as the accuracy of the module was

improved.

7.3 Optical Character Recognition 114

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 100.00 100.00 100.00 100.00
Network 2 100.00 100.00 100.00 100.00
Network 3 100.00 100.00 100.00 100.00
Network 4 100.00 100.00 100.00 100.00
Network 5 100.00 100.00 100.00 100.00
Network 6 100.00 100.00 100.00 100.00
Network 7 100.00 100.00 100.00 100.00
Network 8 100.00 100.00 100.00 100.00
Network 9 100.00 100.00 100.00 100.00
Network 10 100.00 100.00 100.00 100.00

�� � 100.00 � 0.00 100.00 � 0.00 100.00 � 0.00 100.00 � 0.00

Table 7.3: Classi�cation performance (% correct) of Invariance Signature Neural Net-
work Classi�ers (with perfect Local Orientation Extraction) trained for 1000 iterations
with the data shown in Figure 7.1 and tested with the \perfect" data set in Figure 7.2.

t1

classi�ed as
f

t2

classi�ed as
f

t4

classi�ed as
a

Figure 7.5: Test Patterns Misclassi�ed by the 5 Bin Invariance Signature Neural Net-
work Classi�ers, and the training examples as which they were incorrectly classi�ed.

The results for the 10 bin system in Table 7.5 show that the e�ects of inaccuracies

in the Local Orientation Extraction module are greater when the number of bins is

increased. This is due to the fact that the errors can cause the consistency measure

at a point to change bins more easily this way, thus altering the histogram Invariance

Signature.

7.3 Optical Character Recognition

Having demonstrated that Invariance Signatures retain su�cient information for the

classi�cation of \perfect" character data, it is now necessary to show that the system

can be used to achieve transformation invariant recognition of data in the presence of

sensor and quantization noise. To this end, it was decided to apply ISNNCs to the

classi�cation of scanned images of shifted and scaled printed alphabetic characters.

7.3 Optical Character Recognition 115

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 100.00 96.591 100.00 96.591
Network 2 100.00 96.591 100.00 96.591
Network 3 100.00 96.591 100.00 96.591
Network 4 100.00 96.591 100.00 96.591
Network 5 100.00 96.591 100.00 96.591
Network 6 100.00 96.591 100.00 96.591
Network 7 100.00 96.591 100.00 96.591
Network 8 100.00 96.591 100.00 96.591
Network 9 100.00 96.591 100.00 96.591
Network 10 100.00 96.591 100.00 96.591

�� � 100.00 � 0.00 96.591 � 0.00 100.00 � 0.00 96.591 � 0.00

Table 7.4: Classi�cation performance (% correct) of 5 Bin Invariance Signature Neural
Network Classi�ers (with neural Local Orientation Extraction) trained for 1000 iter-
ations with the data shown in Figure 7.1 and tested with the \perfect" data set in
Figure 7.2.

7.3.1 The Data Set

The data set used was derived from the set of shifted and rotated versions of the

lowercase Roman alphabet shown in Figure 7.6. Each character appears in 18 di�erent

orientations, at rotation increments of 20 degrees. The shifts arise due to the fact that

characters are extracted using a bounding-box technique which takes no account of the

centroid position.

An A4 page with these characters printed onto to it from a laser printer at 300

dots per inch was scanned at 75 dots per inch using a UMAX Vista-S6 Scanner. The

connected regions in this image were then detected, and the minimum bounding-box

which could contain the largest of the characters was calculated (56 � 57 pixels). The

image was then segmented into separate characters, and each character was thinned

using an algorithm due to Chen and Hsu (1988). The thinning was necessary since

the Invariance Signature method is only applicable to thin contours. This set of 468

characters was partitioned into a training set and a test set. The training set consisted of

the characters rotated by angles in the range [0�; 160�] relative to the upright characters,

and the test set of those in the range [180�; 340�]. In Figure 7.6, those characters to the

left of the dashed line were used for training, and those to the right for testing. The

resultant scanned, extracted and thinned training set is shown in Figures 7.7 and 7.8,

and the test set in Figures 7.9 and 7.10, respectively.

It is interesting to compare the subjective visual similarity between the Invariance

Signatures both within and between classes for these extracted data. Figure 7.11 shows

the �rst four training examples of the letter \a", accompanied by images showing the

tangent estimates at each point of the contours. The tangent estimate is represented

7.3 Optical Character Recognition 116

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 100.00 95.455 100.00 93.182
Network 2 100.00 95.455 100.00 93.182
Network 3 100.00 95.455 100.00 93.182
Network 4 100.00 95.455 100.00 93.182
Network 5 100.00 95.455 100.00 93.182
Network 6 100.00 95.455 100.00 93.182
Network 7 100.00 95.455 100.00 93.182
Network 8 100.00 95.455 100.00 93.182
Network 9 100.00 95.455 100.00 93.182
Network 10 100.00 95.455 100.00 93.182

�� � 100.00 � 0.00 96.591 � 0.00 100.00 � 0.00 96.591 � 0.00

Table 7.5: Classi�cation performance (% correct) of 10 Bin Invariance Signature Neural
Network Classi�ers (with neural Local Orientation Extraction) trained for 1000 iter-
ations with the data shown in Figure 7.1 and tested with the \perfect" data set in
Figure 7.2.

by a line segment with the orientation of the estimated tangent. These images do not

indicate the weight assigned to each estimated tangent.

It is not easy to interpret the similarity between these tangent representations of the

contours. For this, it is necessary to see the Invariance Signatures. Figure 7.12 shows

the Invariance Signatures for the patterns in Figure 7.11 with respect to rotation,

dilation and translation. The Invariance Signatures are represented by the Invariance

Measure Density histograms. It is immediately apparent that there is a great deal of

(subjective) similarity between these representations of the shifted and rotated patterns.

They are not identical, as a result of the various sources of noise discussed in x7.2. For
classi�cation purposes, however, all that is required is that these signatures be more

similar to each other within a letter class than between letter classes. This must be

determined by experiment.

Figures 7.13 and 7.14 show the equivalent data for the �rst four training patterns

for the letter \x". These again show the marked within-class similarity, and are also

distinctly di�erent to the signatures for the letter \a": these letters were deliberately

chosen since \a" is \quite rotationally-invariant", whereas \x" is \quite dilationally-

invariant".

7.3.2 Selected Networks Employed for this Problem

The methodology employed for this experiment was identical to that used for the syn-

thetic data, described in x7.2.3. The TNN used in this case had a 56 � 57 node input

layer, and a 1 � 26 output layer, giving a massive 83018 independent parameters to

be estimated. With only 234 training patterns and 83018 parameters, this problem

7.3 Optical Character Recognition 117

is almost certain to be linearly separable. Simulation veri�ed that this problem was

indeed learnable by a network with no hidden layer.

A variety of di�erent classi�cation modules was tried, for ISNNCs with both 5

and 10 bin Invariance Signatures. These included the simple linear classi�er, and

a variety of MLP classi�ers with di�ering numbers of nodes in their hidden layers.

These experiments indicated that 5 bin Invariance Signatures were insu�cient for this

problem, and that it was not linearly separable. It also became clear that the errors

introduced by the slightly inaccurate network-estimated Local Orientation Extraction

caused a noticeable departure from invariance (see x7.2.5). For these reasons, the results
presented are for 10 bin ISNNCs with directly-calculated (\perfect") Local Orientation

and a MLP classi�cation module. The MLP classi�er had a 3 � 10 node input layer,

a 15 node hidden layer, and a 26 node output layer. This classi�er has only 881

parameters to be estimated, a reduction of 99% compared to the TNN linear classi�er.

This translates to a dramatic reduction in both the storage space and the training time

required. Only �ve TNNs were trained, partly because of the training time needed,

and partly because the results were so consistent.

7.3.3 Results for Traditional Neural Networks

It might have been expected that the TNNs would perform better on this task than on

the task with the synthetic data described in x7.2.3, since this training set does indeed
contain di�erently transformed versions of the canonical untransformed characters. As

can be seen from Table 7.6, the results are in fact similar, and slightly worse in this

case (average best percent correct of 13.932 � 0.300 compared with 15.000 � 0.454).

Although better than chance (3.85% correct), these results are no where near usable

for an optical character recognition system.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 100.00 13.675 100.00 11.111
Network 2 100.00 14.103 100.00 11.111
Network 3 100.00 14.103 100.00 10.684
Network 4 100.00 14.103 100.00 10.684
Network 5 100.00 13.675 100.00 11.111

�� � 100.00 � 0.00 13.932 � 0.300 100.00 � 0.00 10.940 � 0.209

Table 7.6: Classi�cation performance (% correct) of Traditional Neural Network Clas-
si�ers trained for 200 iterations with the data shown in Figures 7.7 and 7.8 and tested
with data set in Figures 7.9 and 7.10.

7.3 Optical Character Recognition 118

7.3.4 Results for Invariance Signature Neural Network Classi�ers

The results obtained with ISNNCs attempting to classify the characters into 26 classes

appear in Table 7.7. These results show that the ISNNCs achieve a much higher

correct classi�cation rate on the test set than the TNNs. The failure of the ISNNCs to

achieve 100% correct classi�cation of the training set is in fact not surprising. The test

and training sets used for this problem have each individual character of the alphabet

mapped to a separate class. Yet, as was discussed in x7.2, the sets of characters fb, d,
p, qg and fn, ug are identical under rotations and re
ections: transformations under

which the ISNNC output is invariant. The expected training set performance for noise-

free data is thus 100 � (20 + 0:25 � 4 + 0:5 � 2)=26 = 85% correct. Any performance

on the training data better than this must be the result of the �tting of noise in the

training data.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 95.726 72.650 95.726 71.795
Network 2 96.154 72.222 96.154 70.940
Network 3 96.154 73.077 96.154 69.658
Network 4 95.299 73.932 95.299 70.513
Network 5 94.872 71.795 94.872 71.368
Network 6 95.726 72.650 95.726 68.803
Network 7 96.154 73.504 96.154 69.658
Network 8 97.436 72.222 97.436 70.513
Network 9 94.444 74.359 94.444 69.658
Network 10 96.154 70.940 96.154 70.940

�� � 95.812 � 0.783 72.735 � 0.971 95.812 � 0.783 70.385 � 0.877

Table 7.7: Classi�cation performance (% correct) of 10 bin Invariance Signature Neural
Network Classi�ers (with perfect Local Orientation Extraction) trained for 40000 itera-
tions with the data shown in Figures 7.7 and 7.8 and tested with data set in Figures 7.9
and 7.10.

In order to assess the magnitude of this e�ect, training and test sets were created

in which fb, d, p, qg were assigned the same label, as were fn, ug. The results are

shown in Table 7.8. These results show that the average �nal test set performance was

improved by 14.8% by this re-labeling, which is very close to the maximum possible

15.4% achievable if this were the only source of error.

The residual di�erence between training and test set error is generalization error,

rather than invariance error. These networks were trained with only 9 examples of each

character, and these examples are quite noisy. There is the unavoidable quantization

noise, but there are also some quite marked artifacts, such as the loops introduced by

the thinning algorithm, one of which can be seen in pattern a03 in Figure 7.12, and in

several patterns in both the training and test sets in Figures 7.7 though 7.10. There

7.3 Optical Character Recognition 119

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 98.718 87.179 98.718 87.179
Network 2 99.145 83.761 99.145 82.906
Network 3 99.573 86.752 99.145 85.897
Network 4 99.573 86.752 99.145 85.043
Network 5 98.718 88.034 98.718 88.034
Network 6 99.573 85.897 99.145 85.470
Network 7 100.00 85.897 100.00 83.761
Network 8 98.291 86.325 98.291 85.043
Network 9 97.863 86.752 97.863 85.043
Network 10 99.145 84.615 99.145 83.761

�� � 99.056 � 0.628 86.196 � 1.179 99.056 � 0.628 85.214 � 1.483

Table 7.8: Classi�cation performance (% correct) of 10 bin Invariance Signature Neural
Network Classi�ers (with perfect Local Orientation Extraction) trained for 10000 itera-
tions with the data shown in Figures 7.7 and 7.8 and tested with data set in Figures 7.9
and 7.10, modi�ed to label characters which can be transformed into each other as the
same character.

are also two erroneous test patterns: the result of clipping in the segmentation process.

They are the �nal m and the �nal w. These were left in, as such errors can and do

occur in practical applications.

Misclassi�cations

d ! n f ! t f ! j i ! l i ! l i ! l i ! l

i ! l i ! l j ! r k ! f k ! r k ! f l ! i

m ! h n ! b n ! b q ! n r ! f r ! y r ! k

r ! i t ! f t ! f t ! f t ! f u ! h w ! m

Table 7.9: Failure analysis for Network 5 from Table 7.8.

The errors made by the ISNNCs are not random. To illustrate this, a failure analy-

sis is presented for Network 5 from Table 7.8, showing how the test patterns were

misclassi�ed. Patterns which are perceptually similar are responsible for many of the

misclassi�cations. This means that prior information about likely errors could be used

in conjunction with these classi�cations to aid error correction. This failure analysis

indicates that the ISNNCs often appear to make errors that are very \human", which

is a promising indication that the Invariance Signature measures contour similarity in

a way similar to the (unknown) measure used by humans. Inspection of the actual

thinned patterns used for training and testing the networks indicates that the patterns

for the letters fi, j, lg are little more than straight lines. If these were to be re-labeled as

the same character, �nal test set performance for Network 5 would improve to 91.026%

correct. If the same were done for ff, tg, which are also extremely similar, test set

performance would be 93.162% correct.

7.3 Optical Character Recognition 120

The misclassi�cations of patterns to the classes b and n may be due to the fact that

the re-labeled dataset implies a non-uniform prior probability distribution for these

classes: b was used as the target class for input patterns corresponding to fb, d, p, qg,
and thus occurs four times more frequently in the training data than any other class.

Similarly, n was used as the target for inputs fn, ug. As discussed in x3.2.6, networks
will tend to \guess" these classes more frequently than the others.

In the context of the extremely small training set, this is a remarkable result, com-

parable with character recognition results achieved by others with thousands, rather

than tens, of training patterns. Such re-relabeling is in any case an essential feature of

a truly invariant optical character recognition system, since some characters are inher-

ently ambiguous under rotation and re
ection. Others are extremely similar, and noise

can render them indistinguishable. In any real optical character recognition system,

a dictionary is used to verify recognized words, and context is used to correct incor-

rectly labeled patterns. Another possibility is that the orientation of correctly-classi�ed

unambiguous characters could be used to infer the correct labeling of ambiguous char-

acters.

Perhaps most importantly, these results show that ISNNCs can classify correctly

patterns which have been transformed by arbitrarily large amounts. The shifts and

rotations of the input images are not restricted to small perturbations of the exam-

ple patterns. This indicates that the ISNNCs are performing truly invariant pattern

recognition, rather than interpolation-based generalization.

This study should be considered to be a \proof of concept", both for the Invariance

Signature as a contour descriptor, and for MBNNs which classify on that basis. It is

not intended to be a large-scale experiment which corresponds to a real application.

Such a study would require much greater quantities of data than are used here. We

believe, however, that the experiments presented here are su�cient to demonstrate

that the theoretical work of Chapters 5 and 6 has resulted in a system that is genuinely

useful for robust invariant pattern recognition. The quality of the results obtained

is in fact remarkable when the size of the training sets is compared to those used in

other neural network approaches to the optical character recognition problem, which

frequently consist of many thousands of input-output examples.

7.3 Optical Character Recognition 121

rrrrrr r rrrrrrr

qqqqqq q

r
qqqqqq

r

t
sssss

t tttttt

sssss
rr

s sssssss

q

ooo
nnn

o oooooo

nnnnnnn n nnnnnnn
o

pppppp p

qqqq
pppp

oooooo o

ppppppp

t

xxxxxx x

yyyyyy

xxx
wwww

x xxxxxxx

y

zzzzzz z zzzzzzzz
yyyyyy y

zzz
yyyy

w

uuuuuu u

v
uuuuuu

tttttt t

uuuuu
tt

v

wwwww
v

w wwwwwww

vvvvvvv v vvvvvvv

m

eeeeee e eeeeee

ddddddd d ddddddd

e

ffffff f
ggggggg

fff
eeee

f fffffff

d

b
aaaaa

b bbbbbb
aaaaa a aaaaaaa

b
cccccc c

dd
cccccc

bbbbbb b

ccccc
bb

g

kkkkkk k

lllll
kkk
jjjjj

k kkkkkkk

l

mmmmmm m mmmmmmmm

llllll l

mm
lllll

j

hhhhhh h hhhhhhh

gggggg g

hhhh
ggg

i

jjjj
ii

j jjjjjjj

iiiiiii i iiiiiii

Figure 7.6: The characters scanned to generate the real data set. The box shows the
border of an A4 page (210mm � 297mm) so that the size of the original characters
may be judged. The dashed line shown the partition into training and test data.

7.3 Optical Character Recognition 122

Figure 7.7: Training set of thinned, scanned characters (Part 1).

7.3 Optical Character Recognition 123

Figure 7.8: Training set of thinned, scanned characters (Part 2).

7.3 Optical Character Recognition 124

Figure 7.9: Test set of thinned, scanned characters (Part 1).

7.3 Optical Character Recognition 125

Figure 7.10: Test set of thinned, scanned characters (Part 2).

7.3 Optical Character Recognition 126

1. a00 Raw Image 2. a00 Tangents

3. a01 Raw Image 4. a01 Tangents

5. a02 Raw Image 6. a02 Tangents

7. a03 Raw Image 8. a03 Tangents

Figure 7.11: Tangents estimated for training examples of the letter \a".

7.3 Optical Character Recognition 127

1. a00 Rotation 2. a00 Dilation 3. a00 Translation

4. a01 Rotation 5. a01 Dilation 6. a01 Translation

7. a02 Rotation 8. a02 Dilation 9. a02 Translation

10. a03 Rotation 11. a03 Dilation 12. a03 Translation

Figure 7.12: 5 bin Invariance Signatures for training examples of the letter \a".

7.3 Optical Character Recognition 128

1. x00 Raw Image 2. x00 Tangents

3. x01 Raw Image 4. x01 Tangents

5. x02 Raw Image 6. x02 Tangents

7. x03 Raw Image 8. x03 Tangents

Figure 7.13: Tangents estimated for training examples of the letter \x".

7.3 Optical Character Recognition 129

1. x00 Rotation 2. x00 Dilation 3. x00 Translation

4. x01 Rotation 5. x01 Dilation 6. x01 Translation

7. x02 Rotation 8. x02 Dilation 9. x02 Translation

10. x03 Rotation 11. x03 Dilation 12. x03 Translation

Figure 7.14: 5 bin Invariance Signatures for training examples of the letter \x".

8. Conclusion 130

Chapter 8

Conclusion

The central tenet of this thesis is that the application of generic, problem-independent

neural networks to invariant pattern recognition is both ine�cient and inadequate.

Such \black-box" neural networks have no inherent ability to perform invariant pattern

recognition, and the only available information concerning their desired properties is

that implicit in the data sets used to train them. This is a wasteful approach, since very

large training sets, expensive in acquisition, storage and training time, are necessary

to specify global invariance under transformations such as shift, rotation and scaling.

This approach ignores the fact that the network designer usually knows a great deal

about the desired performance of network, and can frequently express this knowledge

in the form of a succinct, high-level rule. Something better is required.

Despite this, traditional neural networks have some very attractive properties. A

network consists of a set of identical simple computational elements, joined by weighted

connections. Computation is usually inherently parallel. Such characteristics make

networks of this nature ideal candidates for implementation in hardware, such as

speci�cally-fabricated VLSI circuits. With this in mind, we have sought means of

constructing networks which retain these desirable properties, but are constrained to

model the particular problem to which they are to be applied. We have called these

Model-Based Neural Networks.

The Model-Based Neural Network approach may be thought of as a means of com-

piling an expert's high-level knowledge into the architecture of a neural network, and

constraints on its weight-space. We have proposed a variety of di�erent forms of Model-

Based Neural Network in this thesis, but they share the characteristic that they consist

of functionally-distinct modules. These modules perform component sub-tasks of the

invariant pattern recognition problem, and their functionality is speci�ed, either par-

tially or completely, by the network designer. In this way, the designer can use expert

a priori knowledge of the desired properties of the resultant network to constrain it

so that it is guaranteed to have these properties. Invariance under transformations

8.1 Using Weighting Functions to Constrain Networks 131

such as shift, rotation and scaling, often desired in two-dimensional pattern recognition

systems, can be made an inherent property of the network.

8.1 Using Weighting Functions to Constrain Networks

In Chapter 4 we introduced a form of Model-Based Neural Network in which, rather

than being independent, the weights of the connections between nodes in a pair of

layers are speci�ed by a function of the nodes' coordinates and a vector of parameters.

These parameters can be shared in various ways between sets of connections and nodes,

allowing the dimensionality of the space which must be searched during training to be

reduced. Moreover, the form of the weighting function can be used to constrain nodes

and layers of nodes to implement speci�c classes of functions, such as spatial �ltering,

or integration of a �lter's response. Once such a network is trained, knowledge of the

weighting functions and parameter sharing is no longer required. All that remains is a

set of nodes linked by weighted connections. The expert's knowledge, used to specify

the architecture and constrain the weight-space during training, has been compiled

into the network. Importantly, this allows properties to be introduced into the network

completely independently of the training set.

A preliminary demonstration of the advantages of this approach was given by show-

ing that it could be used to construct simple MBNNs which classi�ed textures of

di�ering absolute spatial frequencies correctly, independent of their orientations and

positions. The MBNNs achieved 97� 7:0 percent correct classi�cation of the two-class

test set, compared with 53 � 12 percent correct for the traditional neural networks.

These networks were trained with textures of only one orientation, since rotation and

scale invariance are inherent properties of their architectures. Moreover, these MBNNs

were speci�ed by only 18 parameters, compared with 908 parameters for the minimal

TNNs for this problem. Weight Decay (see x3.3.1) failed to improve the performance of

the TNNs, which is unsurprising considering the form of the training set. This simple

example demonstrates the three main advantages of the MBNN approach: guaranteed

invariant performance, greatly-reduced training set size and far fewer parameters. The

last two properties result in much faster training.

In order to emphasize the improvements possible using this particular MBNN ap-

proach, a comparison was done with a study [Plaut and Hinton, 1987] which used a

TNN to classify synthetic speech spectrograms as risers or non-risers (see x4.3). Ex-

pert knowledge indicated that this problem was in fact a case of the shift-invariant

classi�cation of signals containing di�ering line orientations, in the presence of noise.

A variety of MBNNs was tried, and eventually a design was found, speci�ed by only

22 parameters, which achieved 95:70 � 6:25 percent correct classi�cation of the test

set after training with only 10 example patterns, using simulated annealing. Using a

8.2 The Invariance Signature Neural Network Classi�er 132

1344 parameter TNN, Plaut and Hinton (1987) achieved 97.8 percent correct classi�ca-

tion, after training with 250,000 example patterns using backpropagation. Again, the

MBNN has achieved equivalent performance, but both the number of parameters and

the training set size have been reduced by orders of magnitude.

8.2 The Invariance Signature Neural Network Classi�er

In Chapter 5, a new invariant feature of two-dimensional contours was developed: the

Invariance Signature. We believe that the Invariance Signature is a powerful descriptor

of contour shape, which is closely-related to measures employed in human perception.

Its application is by no means limited to Model-Based Neural Networks. It is a useful

contribution in its own right.

Nevertheless, the development of the Invariance Signature was inspired by the desire

to �nd an invariant contour descriptor which was suitable for calculation in a MBNN,

and which corresponded well to theories of human contour perception. Since Lie group

theory provides the link between the local changes in the positions of points under the

action of a transformation and the global speci�cation of the transformation, it provides

the natural starting point. The Invariance Signature is a global measure of the degree

of invariance of a given contour with respect to a set of Lie transformations, which,

however, is constructed from local calculations. It is this that makes the Invariance

Signature so attractive for use in a neural network.

The core of the Invariance Signature approach is this: rather than seeking individual

invariant features of a contour, the Invariance Signature measures the degree to which

the contour is invariant under a transformation. The statistics of these departures

from invariance are themselves an invariant descriptor of the contour.

In Chapter 6, it was shown that a MBNN could be constructed which calculated a

discrete version of the Invariance Signature, and used this as the basis for the classi�-

cation of contours presented at the input layer. Since the Invariance Signature is shift-,

rotation-, scale- and re
ection-invariant, the output of this network is guaranteed to

be invariant under the application of these transformations to the input layer. This

network is called the Invariance Signature Neural Network Classi�er. The ISNNC is

a MBNN which consists of a wide variety of modules. These modules perform tasks

as diverse as tangent vector estimation and the binning of data. The weights of all

modules in the ISNNC except the �nal MLP classi�er are speci�ed independently of

the training set; some are speci�ed directly, others are determined by training the mod-

ule on a sub-task. As with the weighting-function networks, the �nal result is just a

collection of simple nodes joined by weighted connections, exactly as for a TNN.

In order to be useful, the Invariance Signature must not only be invariant, but it

must retain su�cient information for contour classes to be distinguished. That this is

8.2 The Invariance Signature Neural Network Classi�er 133

so is demonstrated in Chapter 7. The application chosen for the demonstration of the

e�cacy of ISNNCs was optical character recognition, the task being the classi�cation of

arbitrarily shifted and rotated lower-case alphabetic characters from a sans serif font.

Two groups of experiments were performed.

The �rst group of experiments used noise-free, unambiguous computer-generated

characters: perfect data. Networks were trained with only one upright example of each

of the 22 unambiguous characters. The test set consisted of 4 di�erently shifted and ro-

tated examples of each character. The best test test classi�cation performance obtained

by TNNs on these data was 15:00 � 0:45 percent correct. Using NOEM (see x7.2.5),
the ISNNC achieved 96:60 � 0:00 percent correct classi�cation, and with eigenvector-

based local orientation extraction, 100:00�0:00 percent correct: with perfect data, the

ISNNC produces perfect results.

This preliminary experiment with synthetic \perfect" data demonstrated that the

Invariance Signature was indeed su�cient to distinguish all the unambiguous letters of

the alphabet. The second group of experiments used data obtained by scanning char-

acters printed at 18 di�erent orientations. Shifts were introduced by the segmentation

process. These data were then thinned. The resulting data were far from perfect, the

dominant problems being quantization noise and thinning artifacts. The data set was

divided into a training set and a test set, each containing 9 examples of each character.

Trained with this data, the TNNs achieved a best performance of 13:93� 0:30 percent

correct. The ISNNCs obtained 72:74 � 0:97 percent correct on ambiguous data, and

86:20 � 1:18 percent correct on unambiguous data. Further inspection of the training

and test data indicated other ambiguities. When corrected for these, ISNNC perfor-

mance improved to 93.16 percent correct.

In all these cases, both for perfect data and for the scanned character task, the

dimensionality of the classi�cation module was very much lower for the ISNNCs than

it was for the TNNs. For the scanned data task, the (minimal) TNN had 83018 para-

meters, whereas the ISNNC had only 881 parameters to be determined during training.

Moreover, the dimensionality of the ISNNC classi�er can be varied by the designer, by

changing the number of bins for the discrete Invariance Signatures. The training time

for these ISNNCs was correspondingly reduced.

These experiments indicate that the Invariance Signature can be successfully em-

ployed for the recognition of scanned characters independent of rotations and shifts,

and that this technique can be implemented in a MBNN. The test set performance

obtained is comparable to that obtained by others using thousands of training exam-

ples, and is remarkable considering the amount of noise present. Since the ISNNCs are

guaranteed to be invariant under shift, scaling, rotation and re
ection, and training set

performance on the noisy data was 99:06 � 0:63 percent correct, it can be concluded

that test set performance below this level is due to failure to generalize in the presence

8.3 Conclusion 134

of noise, not failure to generalize in the sense of invariance. If the size of the training

set were increased, test set performance could be expected to approach 100 percent

correct.

8.3 Conclusion

Throughout this thesis, a number of di�erent ways of designing Model-Based Neural

Networks has been introduced. In every case, the MBNN was shown to out-perform a

TNN on the same task. It might be said that the comparisons were unfair, since the

training sets used were inadequate for good TNN performance to be expected. That

only emphasizes one of the key advantages of the MBNN approach: large training sets

are not required. Also, in every case the number of parameters required to specify the

MBNN was smaller than that for the TNN, often dramatically so. The training time

required was correspondingly less.

A new and powerful invariant descriptor for two-dimensional contours, the Invari-

ance Signature, has been developed It has been demonstrated that the local nature of

the initial calculations required to obtain the Invariance Signature makes it particularly

suitable for implementation in a neural network. Networks based on the Invariance Sig-

nature have been designed, and successfully applied to the shift- and rotation-invariant

recognition of scanned characters.

The Model-Based Neural Network approach to invariant pattern recognition has

been successfully shown to provide a framework for a network designer to compile

expert a priori knowledge of the problem domain into a neural network. These Model-

Based Neural Networks have guaranteed invariances, require less training data, have

fewer parameters, are faster to train, and out-perform their traditional counterparts.

A. Publications 135

Appendix A

Publications

Caelli, T. M., Squire, D. M. and Wild, T. P. (1993). Model-based neural networks,

Neural Networks 6: 613{625.

Squire, D. M. and Caelli, T. M. (1995). Shift, rotation and scale invariant signatures

for two-dimensional contours, in a neural network architecture, to appear in the

Proceedings of the 1st International Conference on the Mathematics of Neural Net-

works and Applications (MANNA 95), Lady Margaret Hall, Oxford, published as

a special edition of Annals of Mathematics and Arti�cial Intelligence, J.C. Baltzer

Scienti�c Publishing Company, Basel - Switzerland.

B. Introduction to the Xnet Neural Network Simulator 136

Appendix B

Introduction to the Xnet Neural

Network Simulator

The Xnet Neural Network Simulator was written as a
exible environment in which to

develop and test the Model-Based Neural Networks used in this thesis. It is written

in C, for an X windows and Unix environment, using the Motif widget set. There is a

graphical interface which allows the user to create networks of various architectures and

connection paradigms interactively. Training and test sets can also be created using

the program, but are more frequently generated by other systems.

Xnet provides powerful diagnostic output during the training of a network. Graphs

of the training and test set errors and classi�cation performances are updated after a

user-speci�ed number of iterations. The system can be made to \animate" the network's

performance on a given input pattern as training proceeds, by assigning grey-levels to

the nodes corresponding to their outputs after each iteration. These data allow the

rapid detection of problems such as unit saturation, and allow the network architecture

and training parameters for a given problem to be tuned quickly.

There is a \batch" version of the network training system which contains none of

the overhead required for the monitoring of and interaction with the system required

by the graphical user interface. This is optimized for fast training, and is used to train

sets of networks once the architecture and training parameters have been decided upon

using Xnet. This version still logs data during training, so that the dynamics of the

training process may be investigated later, if necessary.

In all, the system consists of 11819 lines of code. It has been successfully compiled

and used on both Silicon Graphics and Sun workstations. The code is available upon

request via email to squizz@cs.curtin.edu.au.

The remainder of this appendix takes the form of three tutorials, which demonstrate

the \look and feel" of the Xnet system, and the way it can be used to develop and

analyse neural network solutions to problems. It is aimed at the novice user.

B.1 Familiarization with Xnet 137

B.1 Familiarization with Xnet

B.1.1 Introduction

The aim of this tutorial is to become familiar with the use of the Xnet Neural Network

Simulator. By the end, you should know how to load a neural network using Xnet, how

to load sets of data for training neural networks with Xnet, and how to train networks.

You will learn about the parameters used in training a feed-forward neural network

using the backpropagation algorithm.

Next, you will learn how to construct your own networks using Xnet, and how

to specify your own training sets. You will discover some of the capabilities of feed-

forward networks trained with the backpropagation algorithm, and also some of their

limitations.

B.1.2 Starting Xnet

Go to the directory where you have compiled the Xnet system, and simply type Xnet

to launch the Xnet system. If the background colour of the Xnet window is blue when

it starts up, it means that the Xnet resource database �le has not been loaded for the

display at which you are working. Typing XN in the directory where Xnet is located

should �x this.

When Xnet has loaded, you should see the window shown in Figure B.1. As you

can see, it is empty, except for a row of buttons on the right hand side of the window.

In the course of this tutorial, you will learn what all of these buttons do.

B.1.3 Loading a Network

In order quickly to become familiar with the Xnet interface, it will be easiest to load a

network that has been created earlier. To do this, click on the \Load Network" button.

This will cause a dialog box to pop up, as shown in Figure B.2. To load a network �le,

you can click once on the �lename, and then click \OK", or you can simply double-

click on the �lename. Load the network \ab.net".

When you have loaded the network, a diagram of its structure should appear in the

left hand side of the Xnet main window. It should look like Figure B.3. In the Xnet

program, networks are drawn with their input layer as the top layer of the network.

The output layer is the bottom layer in the diagram. The network \ab.net", therefore,

has a 15� 15 input layer, a 3� 3 hidden layer, and a 1� 2 output layer.

B.1.4 Specifying an Input Vector For The Network

Now that you have a network loaded into the program, you need to specify an input

vector so that you can run the network. The input vector speci�es the outputs of

B.1 Familiarization with Xnet 138

Figure B.1: Xnet main window on startup.

the nodes (arti�cial neurons) in the input layer of the network. These values are then

propagated through the network to determine the output values of the nodes in the

output layer.

To specify the input vector for the network, click on the button labeled \Set Input

Vector". This will cause a window titled \Get Vector" to pop up, as shown in Fig-

ure B.4. This window contains tools. Most of the window (containing a hand-drawn

\a" in Figure B.4) is a grid of squares of the same dimensions as the input layer of the

network. Clicking in a square causes it to change to the current colour. You can draw

in this area by holding down any mouse button in this area and dragging.

On the right hand side of the window is a column of rectangles of di�erent grey

levels. This is the palette from which you select the current colour, by clicking on the

colour you want. Below this column is a square which displays the current colour. The

various colours represent values in the vector in the range 0 to 1. Black represents 0 and

white represents 1. Black and white are often the only values that you need. Along the

bottom of the window are some buttons. Hopefully their functions are obvious from

B.1 Familiarization with Xnet 139

Figure B.2: Xnet �le load dialog box.

Figure B.3: Xnet network \ab.net".

their labels.

Practice drawing various di�erent input vectors. When you have tried out the

features available, click on \Clear to Zeros" to reset all the elements of the vector to

zero. Then try drawing an \a" like the one in Figure B.4. When you are happy with

your e�ort (it doesn't need to be a copy), click on the \Done" button.

Notice that the input vector you have just speci�ed appears in the main Xnet

window, below the column of buttons on the right. It should look like Figure B.5.

Below the input vector, the current output vector is displayed. This is updated every

time you modify the input vector, by running the input vector through the network

and displaying the result. At the moment both the output nodes should have output

values close to 0.5, because the weights in the network are initialized to ensure that

this is the case before training. They should both be displayed as a mid-grey colour.

B.1 Familiarization with Xnet 140

Figure B.4: Window for specifying a vector in Xnet.

B.1.5 Training Sets

In order for a neural network to be useful, values must be found for the connection

weights so that the output of the network is correct (or approximately so) for a speci�ed

set of input vectors. This is usually achieved by presenting the network with a set of

input vectors and the desired corresponding output vectors. This set of vectors is called

a training set. The weights are then modi�ed to minimize some cost function which

indicates how well the network is performing at reproducing the behaviour speci�ed by

the training set.

In Xnet, training sets consist of a number of training patterns. Each training pattern

consists of an output vector, and a set of input vectors. This format is used because

it is very common to want many input vectors to produce the same output vector,

especially in classi�cation problems.

Loading A Training Set

A training set has been created to allow you to see how the format works. To load

this training set into the program, click on the \Load Training Set" button in the main

window. This will cause the dialog box in Figure B.2 to pop up. This time, you want

to load the training pattern �le \ab.pat".

B.1 Familiarization with Xnet 141

Figure B.5: Input and output vectors as displayed in the Xnet main window.

Viewing A Training Set

Note that the is a button in the main window labeled \Create, View or Edit A Training

Set". After you have loaded \ab.pat", click on this button so that you can view the

training set you have loaded. A window titled \Specify Training Set" will pop up, as

shown in Figure B.6.

As you can see, Training Pattern 1 consists of an output vector for which the left

node is 1 and the right node is 0, and nine input vectors, all of which are examples of

the letter \a". There is another training pattern too. To see this, click in the darker

grey area at the right of the button labeled \View/Edit Training Pattern Number:".

The background should change to white, and a cursor will appear. Type \2", since

you wish to view Training Pattern 2. Type \Enter" to cause this action to take place.

A training pattern consisting of \b"s should appear. Notice that the upper group of

buttons in the \Specify Training Set" window becomes greyed-out when you do this,

and the lower group become active. At this stage you do not wish to modify the training

set, so click on \Training Pattern Done", and then click on \Done" to return control

to the main window.

B.1.6 The Training Control And Monitoring Window

Now that you have speci�ed a network and a training set, you are in a position to

train the network. To do this, click on the button labeled \Train Network" in the main

window. This will cause a window labeled \Train Network" to pop up, as shown in

Figure B.7.

This window allows you to set the parameters for the backpropagation algorithm

and to monitor the progress of training. In the top left of the window are seven

B.1 Familiarization with Xnet 142

Figure B.6: Window for creating, viewing or editing a training set.

�elds where you can enter numbers that control training, and the display of training

performance.

The Weight Update Equation

To understand these numbers, you need to be familiar with the weight update equation

used in the backpropagation training algorithm. It is given in equation B.1.

wijt+1 = wij t � �
@E

@wij

����
t

+ ��t�1 � �wijt (B.1)

The � refers to the total change in wij at the previous iteration. Therefore,

�t = �� @E
@wij

����
t

+ ��t�1 � �wij t (B.2)

The symbols in equation B.1 correspond to the parameters in Table B.1

These parameters are all initialized to values that should work, though not neces-

sarily optimally, in most situations. Do not change the Weight Decay Rate � from zero,

since it is not intended for use in this tutorial.

B.1 Familiarization with Xnet 143

Figure B.7: Window for training a network.

Other Parameters

The other parameters which you can change control how long training goes on for, and

how the progress is reported to you.

No. of Passes, as you would expect, controls the maximum number of passes over

the training set that are to be made during training. The changes required in all the

weights are accumulated for each input-output pair in the training set, and then the

weights are updated at the end of each pass. A pass over the entire training set is often

called an epoch.

Print Output Rate controls how often you are informed of the progress of training.

Graphs and text values will be updated after every n passes, where n is the value typed

in for Print Output Rate. You should not need to change it from 1 in this tutorial.

Termination Error provides a way to specify a condition whereby training will

stop before the speci�ed number of passes have been made. If the Sum Squared Error

on the entire training set falls below the value speci�ed here, training will stop. This

value is given as a percentage, and allows you to specify a condition that is \good

B.1 Familiarization with Xnet 144

Symbol Parameter

wij t Weight between nodes i and j at iteration t
@E
@wij

���
t

Partial derivative of the error function E

with respect to weight wij at iteration t
� Learning Rate
� Momentum Term
� Weight Decay Rate

Table B.1: Training parameters

enough".

Threshold For Correct Classi�cation determines when a given input vector will

be deemed to have been classi�ed correctly. It assumes that, for classi�cation problems,

there is one node in the output layer for every class. Each node is to have the value

1 for the class it corresponds to, and 0 for all other classes. There should, therefore,

be only one node \on" for any given input pattern. Networks can only approximate

this behaviour, the approximation improving as training progresses. The value here

determines what is considered correct classi�cation. It is initialized to 0.9. This means

that the node which is supposed to be \on" must have an output value greater than 0.9,

and all the others must have outputs less than (1 - 0.9) = 0.1 in order for the pattern

to be considered correctly classi�ed. This is not the only possible means of deciding

upon classi�cation, but is the one which will be used in this tutorial.

The \Display Performance Using Current Input Vector" Button

In the upper right of the \Train Network" window is a toggle button labeled \Display

Performance Using Current Input Vector". When this toggle is on, it appears red.

When on, this causes the input vector speci�ed from the main window to be run

through the network after each training pass, and the result displayed in the \Current

Output Vector" region of the main window. Check this box, as watching this can be

very useful in answering some of the questions below.

Training A Network

The initial values of all the parameters are suitable for the network (\ab.net") and

training pattern (\ab.pat") which you have loaded. Click on the \Train Network"

button to see what happens during the training of a network.

You should see that the axes on the graph in the middle of the window (see �g-

ure B.7) are labeled to re
ect the desired number of passes. There will be up to four

graphs plotted on these axes during training. The legend for their colours is given in

Table B.2.

B.1 Familiarization with Xnet 145

Graph Colour Quantity Plotted

red % Error on Training Set
black % Error on Test Set
blue % of Training Set Correctly Classi�ed
green % of Test Set Correctly Classi�ed

Table B.2: Graph colours

The numerical values of these quantities after the most recent pass are displayed

below the graph.

Now click \Done" to get back to the main window. Load the network \ab.net" from

the �le again, so that you can get it back to the state it was in before training. Change

the control parameters to the values given in Table B.1.6.

Parameter Value

Learning Rate 4
Momentum Term 0.5
No. of Passes 20
Print Output Rate 1
Termination Error 0
Weight Decay Rate 0

Table B.3: New values

Exercises

Aside: These exercises are designed to help the user to understand the ways in

which the Learning Rate and Momentum parameters in
uence the dynamics

of training. Speci�cally the values have been chosen to demonstrate how the Mo-

mentum parameter can control oscillations, and how large values of the Learning

Rate can lead to saturation.

Train the network with these parameters. Describe what you observe. Why do you

think that this has happened?

Reload \ab.net". Now increase the Momentum to 0.7. Train the network with

this new parameter. Describe what happened and why.

Reload `ab.net". Change the Momentum back to 0.5, and increase the Learning

Rate to 5. Train the network. Describe what happened and why.

Reload `ab.net". Change the Learning Rate to 4.2. Train the network. Describe

what happened and why.

B.2 Creating Networks And Training Sets with Xnet 146

B.2 Creating Networks And Training Sets with Xnet

B.2.1 Introduction

The aim of this tutorial is to build upon the work done in tutorial B.1, in order to

complete your familiarization with Xnet. In doing this, you will study one of the

classic problems from the history of neural networks, the XOR problem. This will give

you some insights into the fundamental limitations of the simplest neural networks, and

how to get around them.

B.2.2 The XOR problem

The �rst researchers in the �eld of neural networks were inspired by two main motiva-

tions. It had been discovered that brain cells, neurons, seemed to operated \summing"

a collection of inputs, and then �ring if a threshold was exceeded. The output of such

a neuron would contribute to the input of many other neurons. Some researchers were

interested in discovering how the brain might accomplish rational thought using such

simple elements. Other researchers were interested in building devices (for tasks such

as pattern recognition) based on such simple units { if it was good enough for the brain,

why not for machines?

One of the �rst tasks researchers undertook was to demonstrate that networks of

such simple units could perform all the basic logic functions (AND, OR, NOT etc.).

One of the most interesting turned out to be the Exclusive OR function, or XOR. The

exclusive OR of two logical variables is true if either of the variables, but not both, is

true. It is false otherwise. The truth table is shown in Table B.4.

0 1

0 0 1

1 1 0

Table B.4: XOR truth table.

This problem is easily mapped onto a neural network. The network must have an

input layer with two nodes, and an output layer with one node. The values of these

nodes should correspond to the values in the truth table.

B.2.3 Creating A Network

Specifying The Number Of Layers And Their Dimensions

Start the Xnet simulator, as described in tutorial B.1. Once Xnet has started, click

on the button labeled \Specify Levels and Layers". This will cause a window titled

B.2 Creating Networks And Training Sets with Xnet 147

\Specify Network Dimensions" to pop up (see Figure B.8).

Figure B.8: Xnet window for specifying network dimensions.

Initially, only the topmost prompt, \Number of Levels", will be visible.1 The other

prompts will appear in response to the values you type in.

When designing a neural network to solve a problem, it is usually best to start with

the simplest possible architecture. The simplest architecture for an attempt to solve

the XOR problem has a 2 node input layer, a 1 node output layer, and nothing else.

To construct this network, enter the numbers at each prompt as shown in Figure B.8.

You need two levels, with one layer at each level. Level 1 is the input level, and the

input layer should have one row of two columns. The last level, Level 2, is the output

level. The output layer should have one row and one column.

You can navigate around the window by clicking in the dark grey data entry area

you wish to edit. You can also move to the next data entry area by hitting <tab>. You

can go back to the previous one using <Shift>+<Tab>.

Note: The value you type into a data entry area for a number of levels or a

number of layers will not have any e�ect unless you hit return after

typing it. The e�ect of changing one of these values is immediately

1The Xnet program allows the user to create networks other than the standard backpropagation
networks used in these tutorials. These networks can have more than one layer of nodes at each level

of the network. For the purposes of these tutorials, you will only ever need one layer per level.

B.2 Creating Networks And Training Sets with Xnet 148

visible, because it a�ects the number of other data entry areas in the

scrolled window.

Once you have speci�ed all the required values, click on \Done" to return to the main

window. You should see a diagram of the network structure you have just speci�ed, as

shown in Figure B.9.

Figure B.9: Xnet two layer XOR network (still unconnected).

If the network which you have just created does not look like Figure B.9, click on

\Specify Levels and Layers" and try again.

Specifying The Connections

Once you have created a system of layers of nodes, you then need to specify how those

nodes are to be connected. The most common connection model for feed-forward neural

networks is to have the outputs of all the nodes in the input layer connected to the

inputs of all the nodes in the hidden layer, with each connection having an independent

weight, and then for all the outputs of all the nodes in the hidden layer to be connected

to all the inputs of all the nodes in the output layer, again with each connection having

an independent weight.

To bring up the window for specifying how the layers you have speci�ed should be

connected, click on the button labeled \Specify Connections". This will bring up a

window titled \Xnet: Connect Layers", as shown in Figure B.10.

This window, like the main window, consists of two main areas:

� A large area on the left containing a diagram of the network.

� An area of buttons on the right. These are in three groups:

1. Buttons for setting the Connection Model for the connections between two

layers.

2. Buttons for setting the Connection Function for the connections between

two layers.

3. Buttons for connecting or disconnecting layers, and for indicating that you

have �nished making connections.

B.2 Creating Networks And Training Sets with Xnet 149

Figure B.10: Xnet window for specifying the way layers should be connected.

In Xnet, whenever a layer is a source for another layer (the destination layer), all

the outputs of the nodes in the source layer are connected to all the inputs of all the

nodes in the destination layer.

Xnet allows the user to create Model-Based Neural Networks, in which each con-

nection is associated with a function rather than just with a number (the weight).

Functions can dependent on the relative positions of the source and destination nodes,

and on several parameters. These parameters may be shared between all nodes in a

destination layer, between all connections entering a node, or they may be independent

for each connection (in which case it behaves exactly like a normal neural network).

You will not need to use any of these features.

The default Connection Model is \Connection". This is indicated by the diamond-

shaped button on the left of the coloured label appearing depressed, and being red. The

default Connection Function is \Normal", which means that each connection simply

has an independent weight associated with it. This is indicated in the same way. Ensure

that the \Connection Model" and \Connection Function" buttons are both set to their

default values.

The quickest and easiest way to connect up the layers to form a standard neural

B.2 Creating Networks And Training Sets with Xnet 150

network is simply to click on the button labeled \Connect All Layers". This will cause

each layer to be connected to the layer immediately below it. The connections are

indicated by a \wedge" which starts out the same size as the base of the source layer,

and �nishes at a point at the centre of the destination layer.

Connect the network by clicking on \Connect All Layers", to see what the connected

network looks like. This is the way you will usually connect networks. Then disconnect

the network by clicking on \Disconnect All Layers".

Note: The wedges which indicate connections between layers in Xnet are

colour-coded. The colour of the main body of the wedge indicates the

Connection Function of those connections, and the colour of the tip

indicates the Connection Model. The colours used match the colours

of the buttons on the right of the \Connect Layers" window.

You can also specify connections by specifying a source layer and a destination

layer, and then connecting them. To specify a layer as the source layer, click on the

layer with the left mouse button. It will change colour, from orange to mustard-yellow

(lighter than the default node colour). A layer is selected as the destination layer by

clicking on it with the middle mouse button. It will change colour, to brown (darker

than the default colour). Once a source and a destination layer have been speci�ed,

they can be connected by clicking on either layer with the right mouse button. Select

the top (input) layer as a source layer, and the bottom (output) layer as a destination

layer. Connect these layers by clicking on one of them with the right mouse button.

Now that you have connected up your network, click on the \Done" button.

You will now be back at the main window, which now shows a diagram of your

connected network. You will need to use this (untrained) network several times in the

course of this tutorial, so you should save it. Click on the \Save Network" button. You

will be prompted for a �le name. Save the network as \xor1.net".

B.2.4 Creating a Training Set

You now have a network ready to train. Before you can train it though, you need a

training set with which to do so. Click on the button labeled \Create, View, or Edit A

Training Set" to pop up the \Specify Training Set Window".

You now need to specify the input and output vectors that correspond to the XOR

problem. Remember that an Xnet training set consists of a number of training patterns.

Each training pattern consists of an output vector, and an arbitrary number of input

vectors for which the network should have that output. For the XOR problem, you

have only two possible output vectors, since there is only one output node, which can

have a desired output value of 0 or 1.2 There are four possible input vectors. All the

2In a classi�cation problem such as this, it is usual to specify the desired values of all output nodes

B.2 Creating Networks And Training Sets with Xnet 151

required values are speci�ed in Table B.4.

At this stage there are no patterns in the training set. The �rst pattern you will add

will be that for which the single output node has an output of 1. The corresponding

input vectors are
h
0 1

i
and

h
1 0

i
.

Click on the \Add New Training Pattern To Training Set" button, and then click

on the \Set Output Vector" button. This will cause the \Get Vector" window to pop

up (as described in tutorial B.1). The grid in which you draw the output vector has, in

this case, only one square, occupying the entire drawing area. You must set its value to

1. Select the colour white (corresponding to 1) from the palette. Click in the drawing

area. The drawing area should change colour to white. Click on the \Done" button.

The output vector you have just speci�ed will now appear in the output vector

area at the top left of the window, below the label \Training Pattern No. 1". You

now need to specify the two corresponding input vectors. This is done by clicking

on the \Add Input Vector" button, and using the \Get Vector" window to draw the

desired input vector. You will need to do this twice. Remember that black (at the

very top of the palette) corresponds to 0, and white to 1. Add the two input vectors to

Training Pattern No. 1. When you have done this, the \Specify Training Set" window

should look like that shown in Figure B.11, on the left.

Figure B.11: Training patterns for the XOR problem.

as exactly 0 or 1. This is because there is usually a node corresponding to each class, and when
an input vector of a given class is run through the network, the desired behaviour is for the output
node corresponding to that class to be \on" (i.e. have an output of 1), and for all other nodes to be
o�. In some other sorts of neural network applications, such as engineering plant control or function
estimation, this is not the case.

B.2 Creating Networks And Training Sets with Xnet 152

Click on the \Training Pattern Done" button to indicate that this training pattern

is complete. This will return control to the upper group of buttons. Now you need to

add a second training pattern to the training set. In this pattern, the desired value for

the output node is 0, and the corresponding input vectors are
h
0 0

i
and

h
1 1

i
.

Add the required second training pattern to the training set, by repeating the procedure

used to add the �rst pattern. When done, it should look like that shown on the right

in Figure B.11.

You have now created a training set specifying the the XOR problem. You will

need this training set later as well, so now you need to save it. Make sure that you

have clicked on \Training Pattern Done" to return control to the upper set of buttons.

Click on the \Save Training Set" button. You will be prompted for a �le name. The

default is \new.pat". Change this to \xor.pat", and then click on \OK". Then click

`Done" to return to the main window.

B.2.5 Training A Network To Solve The XOR Problem

The Two Layer Network

If you have followed the instructions provided, you now have in Xnet a two layer

network that has not yet been trained, and a training set specifying the XOR problem.

You will now attempt to train this network to solve the problem3. Click on \Train

Network" to bring up the training window. Select whatever training parameters you

think appropriate. Train the network, making no more than 10,000 passes over the

training set. You can reload the saved version of the network, \xor1.net", to make

another attempt at training. Make no more than three attempts.

No doubt you have discovered by now that the two-layer network fails to �nd a set

of weights which solves the XOR problem. It is worth considering why, because it is to

do with a fundamental property of the operation of any two layers of a neural network.

The Equations For Calculating The Output Of A Node In A Neural Network

The two-layer network used above is simple enough for us to be able to write down

the equation describing its operation, and this will lead you to understand why it can't

solve the XOR problem.

Every node in a traditional neural network (except those in the input layer) has

a weighted input from the output of each of its source nodes, and one from the bias

3The various parameters used in training a neural network, and the graphs and other information
that Xnet provides during the progress of training are described in tutorial B.1.

B.2 Creating Networks And Training Sets with Xnet 153

node.4 The equation for the activation of node j, xj , is thus:

xj =

nX
i=1

wijyi + wbias (B.3)

where n is the number of source nodes for this node, yi is the output of the ith node,

and wij is the weight on the connection between nodes i and j. The activation, xj ,

is used to calculate the actual output of the node by using it as the argument of a

nonlinear function, here the usual sigmoid:

yj = f(xj)

=
1

1 + e�xj
(B.4)

The shape of the sigmoid is shown in Figure B.12.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-10 -5 0 5 10

1/(1 + exp(-x))

Figure B.12: The sigmoid function.

The equation for the output of the two-layer network used above can be written

down in expanded form as shown in Equation B.5 (note that the index j has been

4Every node in a neural network for which the output is calculated (i.e. all except the input nodes)
has a weighted connection to the bias node. This is a node which has a �xed output of 1. These thus
provide an o�set in the activation equation for each node. The negative of the weight on the connection
to the bias node for a given node is analogous to a a threshold for that node.

B.2 Creating Networks And Training Sets with Xnet 154

dropped since there is only one output node).

x = w1y1 + w2y2 + wbias (B.5)

This is a very simple equation. Recall that for correct classi�cation, we require that

value of the output to be either above or below a threshold, which we will call �. The

fact that the output is \squeezed" by the sigmoid nonlinearity does not alter this,

because the sigmoid is monotonic.

The variables y1 and y2 are constrained to only take on the values 0 or 1. For

the network to solve the XOR problem, therefore, we require that the output be \on"

(greater than the threshold) for two of the four possible combinations, and \o�" for

the the others. For successful performance then, we would need to �nd values of w1,

w2 and wbias so that the inequality in Equation B.6 is satis�ed for inputs requiring a 1

output, and that in Equation B.7 for those requiring a 0 output. Note that the values

of w1, w2, wbias and � must be the same in both equations.

w1y1 + w2y2 + wbias > � (B.6)

w1y1 + w2y2 + wbias < � (B.7)

Exercises

Aside:This exercise is aimed at introducing the user to the notion of linearly

separable problems.

Show that the two-layer network described by Equation B.5 can not solve the XOR

problem. A graph using y1 and y2 as axes will be useful.

How does the above result apply to two-layer neural networks with more than two

input nodes? Can you come up with a statement of the general class of problems that

this kind of network can solve?

A Three-Layer Network We have seen that the XOR problem cannot be solved

by a two layer network. We will now try a three layer network. Go to the Xnet

main window. Click on the \Specify Levels & Layers" button to bring up the window

allowing you to specify a new network. Create a network with:

� 3 levels, 1 layer per level

� An input layer with two nodes; 1 row, 2 columns

� A hidden layer with two nodes; 1 row, 2 columns

� An output layer with one node; 1 row, 1 column

B.3 Generalization and Repeatability 155

Connect the network so that the input layer is a source for the hidden layer, and the

hidden layer is a source for the output layer. Save the untrained network as \xor2.net".

Train the three-layer network using the training set created earlier. Record the

parameters you used, and the performance obtained.

� Find the set of parameters that allow you to train the network in the least number

of passes. Remember that you must reload the network from the �le \xor2.net"

before each attempt at training.

� Comment on the way the choice of parameters in
uences the % Error on Training

Set (red graph) and the % Training Set Correct. It may be helpful to check the

response of the trained network to various input patterns using the \Set Input

Vector" button in the main window.

Why do you think that the three-layer network was able to solve this problem,

whilst the two-layer network could not? What are the implications of this for larger

networks?

There exists a network which can solve the XOR problem which has only four nodes.

Can you �nd it? If so, describe it. (Hint Xnet allows you to connect a layer to any

layer below it).

B.3 Generalization and Repeatability

B.3.1 Introduction

One of the claims often made about neural networks is that they have the ability to

generalize. This means that they have the ability to classify correctly patterns which

were not present in the training set. In order to do this, a neural network would have

to somehow extract the \essence" of a class of patterns.

In this tutorial, you will investigate the ability of neural networks to generalize.

You will see that neural networks certainly can generalize to some extent, but this ca-

pacity is limited. You will also investigate some training strategies aimed at improving

generalization.

Another issue that is often overlooked in the study of neural networks is repeata-

bility. When a neural network is created, the connection weights are initialized to

random values. This means that the training procedure can proceed in di�ering ways

for separate instances of the same network architecture even when using exactly the

same training data. You will see how this can a�ect the �nal performance of networks

after training.

B.3 Generalization and Repeatability 156

B.3.2 Generalization

The claim that neural networks have the ability to generalize is one of the main reasons

for their popularity. A pattern classi�cation system that is able to classify correctly

patterns which were not present in the training set used to produce it is clearly desirable.

Such a system would be able to operate in the \real world", where input patterns might

be noisy, or incomplete. A system based, for instance, on table lookup would fail in

such an environment.

The Test Set

In order to evaluate the ability of a neural network to generalize, it is necessary to

have a set of patterns other than the training set on which the network's performance

can be tested. The Xnet simulator allows you to specify a test set for network. This

is a set of patterns created in exactly the same way as those used for training the

network. During training, if a test set is speci�ed, the mean squared error and the

classi�cation performance of the network on the test set are evaluated after each pass

over the training data. These results are displayed in the graph in the training window.

In order to see how this works, we will do an example.

Start Xnet. Reload the network \ab.pat" that was used in tutorial B.1. Click on the

\Specify Connections" button in the main window, and selected \OK" when warned

about parameters being reinitialised. The \Connect Layers" window will pop up. Click

on \Connect All Layers", and then click on \Done" to return to the main window. This

procedure will ensure that you have an untrained network, with connection weights

randomly initialized.

Now click on \Load Training Set", and load the pattern �le \ab.pat". Click on

\Create, View or Edit A Training Set". This will bring up the \Specify Training

Set" window. Have a look at the basic style of the characters in each of the training

patterns. To do this, type the number \1" in the grey box beside \View/Edit Training

Pattern Number:", and then hit return. This will cause the lower set of buttons to

become active. When you think you are familiar with the style of the characters, click

on \Discard Training Pattern". This will cause the \a" pattern to be removed from

the set. Then click on \`View/Edit Training Pattern Number:" again (since the \b"

pattern is now pattern number 1). When you are familiar with the style of the \b"s,

click on \Discard Training Pattern". There are now no patterns in the training set.

Now you must create a set of patterns to be used to evaluate the generalization

performance of a network trained using the pattern �le \ab.pat". You should be familiar

with the procedure for creating a training set from tutorial B.2.

Create a set of patterns containing three examples of the letter \a", and three

examples of \b". An example pattern is shown in Figure B.13. Do not copy this

B.3 Generalization and Repeatability 157

example. Draw your letters freehand. Save these patterns in a �le called \ab test.pat".

Figure B.13: Example test patterns for network trained using \ab.pat".

Then click \Done" to return to the main window.

Click \Load Training Set", and load the �le \ab.pat" as the training set. Click

\Load Test Set", and load the �le you have just created, \ab test.pat", as the test set

for the network. Then train the network with the default training parameters.

Exercises

Aside: These exercises are intended to introduce the user to the notion of

over-training.

Record all the performance parameters of the network after 1000 passes over the training

data. Describe the way the % Error on Test Set varied compared to the % Error

on Training Set. What was the generalization performance of your network at the

completion of training? Do you think that this performance is good? How might it be

improved?

Train the network for another 1000 passes. Did the generalization improve with

further training? If so, why do you think this was so?

B.3.3 Repeatability

The greater the number of patterns in the training and test sets, the longer it takes

to train the network. Even on extremely fast computers it can take hours to train a

B.3 Generalization and Repeatability 158

network if a realistically-sized training set is used. Since you may not have this amount

of time available, some simulations have been done for you.

The task was to classify an input pattern as one of the digits from 0 to 9. The

network architecture used is shown in Figure B.14.

Figure B.14: Network used for classify patterns as a digit.

The training pattern consisted of 90 example patterns, 9 of each digit. Each input

pattern had noise added to it. An example, for the digit \2", is shown in Figure B.15.

These patterns can be found in the �le \digits train.pat". The test set also contained

90 patterns, each also with additive noise. These patterns can be found in the �le

\digits test.pat".

Five networks of the architecture shown in Figure B.14 were created. Although they

all had the same architecture, the connection weights of each network were randomly

initialized. This meant that the initial conditions for training using the backpropagation

algorithm were di�erent for each network. Each network was trained for 4000 passes

over the training data. Some of the graphs of network performance during training are

shown in Figure B.16

B.3 Generalization and Repeatability 159

Figure B.15: Training pattern for the digit \2".

The �nal performances of the networks on the test and training data are summarized

in Table B.5.

Percent Correct Percent Error
Training Set Test Set Training Set Test Set

digits1.net 100 72.8 0.03 2.06

digits2.net 100 75.0 0.03 2.05

digits3.net 100 73.9 0.03 1.94

digits4.net 100 79.4 0.04 1.85

digits5.net 100 77.2 0.04 1.78

average 100 75.7 0.03 1.94

Table B.5: Final performance of networks trained on digit classi�cation data.

Exercises

Aside: These exercises are intended to encourage the user to think about the

expected value of a networks classi�cation performance, measures for quantify-

ing generalization, and the importance of ensuring that results obtained from a

randomly-initialized system are repeatable.

What would be the expected % Correct on the Test Set if the network was tested before

B.3 Generalization and Repeatability 160

training, and was forced to classify each pattern (i.e. no \undecided" results allowed)?

Do you consider the generalization performance of these networks to be good? What

criterion could be used to judge the generalization performance of these networks?

It is clear that the performances of each of these networks after training with iden-

tical training sets and training parameters are di�erent. Why is this so? Could this

be avoided? What are the implications of this variability of performance for real-world

applications of neural networks?

Finally, you might like to see how one of these pre-trained networks performs at

recognizing your own hand-drawn digits. Load the network \digits1.net" into the Xnet

simulator. You can qualitatively evaluate the performance of the network at classifying

your own hand-drawn digits by clicking on \Set Input Vector" in the main window.

This causes the \Get Vector" window to appear. Anything you draw in this window

immediately gets run through the network, and the resultant output vector is displayed

the the \Current Output Vector" section of the main window. Try to determine which

features of each digit are important for correct classi�cation. What was the performance

of the network on your patterns? Do you consider this good? Can you suggest a more

robust system for classifying hand-written characters?

B.3 Generalization and Repeatability 161

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

Pe
rc

en
ta

ge

Number of Training Passes

Xnet Output

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

(a) Network 1

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

Pe
rc

en
ta

ge

Number of Training Passes

Xnet Output

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

(b) Network 2

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

Pe
rc

en
ta

ge

Number of Training Passes

Xnet Output

% Training Set Correct
% Test Set Correct

% Sum Squared Error On Training Set
% Sum Squared Error On Test Set

(c) Network 3

Figure B.16: Performance of networks trained on digit classi�cation data.

BIBLIOGRAPHY 162

Bibliography

Aarts, E. and Korst, J. (1989). Simulated annealing and Boltzmann machines, John

Wiley and Sons, New York.

Ade, F. (1983). Characterisation of textures by \eigen�lters", Signal Processing 5: 451{

457.

Ahmed, N. and Rao, K. (1975). Orthogonal transforms for digital signal processing,

Springer-Verlag, New York.

Altmann, J. and Reitb�ock, H. J. (1984). A fast correlation method for scale- and

translation-invariant pattern recognition, IEEE Transactions on Pattern Analysis

and Machine Intelligence 6(1): 46{57.

Amari, S.-I. (1977). Neural theory of association and concept-formation, Biological

Cybernetics 26: 175{185.

Amari, S.-I. (1990). Mathematical foundations of neurocomputing, Proceedings of the

IEEE 78(9): 1443{1463.

Asriel U. Levin, T. K. L. and Moody, J. E. (1994). Fast pruning using principal

components, Advances in Neural Information Processing Systems 6: 35{42.

Austin, J. (1989a). An associative neural architecture for invariant pattern classi�-

cation, IEE First International Conference on Arti�cial Neural Networks, Conf.

Publ. No. 313, IEE, pp. 196{200.

Austin, J. (1989b). High speed invariant recognition using adaptive neural networks,

IEE 3rd International Conference on Image Processing and its Applications, Conf.

Publ. No. 307, IEE, pp. 28{32.

Ballard, D. H. and Brown, C. M. (1982). Computer Vision, Prentice{Hall, Englewood

Cli�s, New Jersey 07632.

Barnard, E. and Botha, E. C. (1993). Back-propagation uses prior information e�-

ciently, IEEE Transactions on Neural Networks 4(5): 794{802.

BIBLIOGRAPHY 163

Barnard, E. and Casasent, D. (1990). Shift invariance and the Neocognitron, Neural

Networks 3(4): 403{410.

Barrett, E., Gheen, G. and Payton, P. (1993). Representation of three-dimensional

object structure as cross-ratios of determinants of stereo image points, in Mundy,

Zisserman and Forsyth (1993), pp. 47{68.

Baum, E. B. and Haussler, D. (1989). What net size gives valid generalization?, Neural

Computation 1: 151{160.

Bishop, C. M. (1995). Neural networks for pattern recognition, Clarendon Press, Oxford.

Bulsari, A. (1993). Some analytical solutions to the general approximation problem for

feedforward neural networks, Neural Networks 6(7): 991{996.

Caelli, T. and Dodwell, P. (1984). Orientation-position coding and invariance charac-

teristics of pattern discrimination, Perception and Psychophysics 36(2): 159{168.

Caelli, T. M. and Liu, Z.-Q. (1988). On the minimum number of templates required

for shift, rotation and size invariant pattern recognition, Pattern Recognition

21(3): 205{216.

Caelli, T. M., Squire, D. M. and Wild, T. P. (1993). Model-based neural networks,

Neural Networks 6: 613{625.

Caelli, T., Preston, G. and Howell, E. (1978). Implications of spatial summation models

for processes of contour perception: A geometric perspective, Vision Research

18: 723{734.

Carpenter, G. A. and Grossberg, S. (1987). Invariant pattern recognition and recall

by an attentive self-organizing ART architecture in a nonstationary world, IEEE

First International Conference on Neural Networks, SOS Printing, San Diego, CA,

USA., IEEE Service Center, pp. II/737{745.

Carpenter, G. A. and Grossberg, S. (1988). The ART of adaptive pattern recognition

by a self-organizing neural network, IEEE Computer 21(3): 77{90.

Casasent, D. and Psaltis, D. (1976). Scale invariant optical transform, Optical Engi-

neering 15: 258{261.

Chen, Y.-S. and Hsu, W.-H. (1988). A modi�ed fast parallel algorithm for thinning

digital patterns, Pattern Recognition 7: 99{106.

Chow, G. and Li, X. (1993). Towards a system for automatic facial feature detection,

Pattern Recognition .

BIBLIOGRAPHY 164

Cole, J. B., Murase, H. and Naito, S. (1991). A Lie group theoretic approach to the in-

variance problem in feature extraction and object recognition, Pattern Recognition

Letters 12: 519{523.

Delopoulos, A., Tirakis, A. and Kollias, S. (1994). Invariant image classi�cation using

triple-correlation-based neural networks, IEEE Transactions on Neural Networks

5(3): 392{408.

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation net-

works, Technical Report CMU-CS-88-162, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA 15213.

Fahlman, S. E. (1991). The recurrent Cascade-Correlation architecture, Technical Re-

port CMU-CS-91-100, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213.

Fahlman, S. E. and Lebiere, C. (1990). The Cascade-Correlation learning architecture,

Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA.

Faugeras, O. (1993). Cartan's moving frame method and its application to the geometry

and evolution of curves in the euclidean, a�ne and projective planes, in Mundy

et al. (1993), pp. 11{46.

Ferraro, M. and Caelli, T. (1988). The relationship between integral transform in-

variances and Lie group theory, Journal of the Optical Society of America (A)

5: 738{742.

Ferraro, M. and Caelli, T. M. (1994). Lie transform groups, integral transforms, and

invariant pattern recognition, Spatial Vision 8(1): 33{44.

Fontaine, T. and Shastri, L. (1992). Handprinted digit recognition using spatiotemporal

connectionist models, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 169{175.

Forsyth, D., Mundy, J. L. and Zisserman, A. (1992). Transformational invariance - a

primer, Image and Vision Computing 10(1): 39{45.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition una�ected by shift in position, Biological Cy-

bernetics 36: 193{202.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network, Bio-

logical Cybernetics 20: 121{136.

BIBLIOGRAPHY 165

Fukushima, K., Miyake, S. and Ito, T. (1983). Neocognitron: A neural network model

for a mechanism of visual pattern recognition, IEEE Transactions on Systems,

Man and Cybernetics 13(5): 826{834.

Gibson, J. (1966). The Senses Considered as Perceptual Systems, Houghton-Mi�in,

Boston, Massachusetts.

Gros, P. (1993). How to use the cross ratio to compute projective invariants from two

images, in Mundy et al. (1993), pp. 107{126.

Grossberg, S. (1980). How does a brain build a cognitive code?, Psychological Review

87: 1{51.

Hebb, D. O. (1949). The Organization of Behaviour, Wiley, New York.

Himes, G. S. and I~nigo, R. M. (1992). Automatic target recognition using a Neocogni-

tron, IEEE Transactions on Knowledge and Data Engineering 4(2): 167{172.

Ho�man, W. C. (1966). The Lie algebra of visual perception, Journal of Mathematical

Psychology 3: 65{98.

Ho�man, W. C. (1978). The Lie transformation group approach to visual neuropsychol-

ogy, in E. Leewenberg and H. Bu�art (eds), Formal theories of visual perception,

Wiley, New York, pp. 27{66.

Holden, S. B. and Anthony, M. (1992). Quantifying generalization in linearly weighted

neural networks, Technical Report LSE-MPS-42, London School of Economics

Mathematics.

Hu, M. K. (1962). Visual pattern recognition by moment invariants, IEEE Transactions

on Information Theory, Vol. IT-8, pp. 179{187.

Hubel, D. and Wiesel, T. (1962). Receptive �elds, binocular interaction and functional

architecture in the cat's visual cortex, Journal of Physiology 160: 106{154.

Jain, A. K. (1989). Fundamentals of digital image processing, Prentice-Hall information

and system sciences series, Prentice-Hall International, London.

Khotanzad, A. and Lu, J.-H. (1990). Classi�cation of invariant image representations

using a neural network, IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing 38(6): 1028{1038.

Kirkpatrick, S., Jr., C. G. and Vecchi, M. (1983). Optimization by simulated annealing,

Science 220(4598): 671{680.

BIBLIOGRAPHY 166

Kohonen, T. (1972). Correlation matrix memories, IEEE Transactions on Computers

C-21: 353{359.

Kree, R. and Zippelius, A. (1988). Recognition of topological features of graphs

and images in neural networks, Journal of Physics A: Mathematical and General

21: L813{L818.

Krogh, A. and Hertz, J. A. (1991). Dynamics of generalization in linear perceptrons,

Advances in Neural Information Processing Systems 3: 897{903.

Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generalisation,

Advances in Neural Information Processing Systems 4: 950{957.

Lautrup, B., Hansen, L. K., Law, I., M�rch, N., Svarer, C. and Strother, S. (1994).

Massive weight-sharing: A cure for extremely ill-posed problems, in H. Hermann,

D. Wolf and E. P�oppel (eds), Workshop on Supercomputing in Brain Research:

From Tomography to Neural Networks, J�ulich, Germany, HLRZ, World Scienti�c,

p. 137.

Lawrence, S., Giles, C. L. and Tsoi, A. C. (1996). What size neural network gives opti-

mal generalization? Convergence properties of backpropagation, Technical Report

CS-TR-3617, Department of Electrical and Computer Engineering, University of

Queensland, St. Lucia 4072, Australia.

Le Cun, Y., Denker, J. and Solla, S. (1989). Optimal brain damage, Advances in Neural

Information Processing Systems 2: 598{605.

Leen, T. K. (1995). From data distribution to regularization in invariant learning,

Neural Computation 7: 974{981.

Lenz, R. (1990). Group invariant pattern recognition, Pattern Recognition

23(1/2): 199{217.

Li, C. and Wu, C.-H. J. (1993). Introducing rotation invariance into the Neocognitron

model for target recognition, Pattern Recognition Letters 14: 985{995.

Li, S. (1992). Matching: Invariant to translations, rotations and scale changes, Pattern

Recognition 25(6): 583{594.

Li, X. and Roeder, N. (1994). Experiments in detecting face contours, Vision Interface

Conference.

Lin, F. and Brandt, R. D. (1993). Towards absolute invariants of images under trans-

lation, rotation and dilation, Pattern Recognition Letters 14: 369{379.

BIBLIOGRAPHY 167

Mathews, J. and Walker, R. (1970). Mathematical Methods of Physics, 2 edn, Addison-

Wesley Publishing Company, Inc.

McGraw, G. (1992). Letter Spirit: Recognition and creation of letterforms based on

uid concepts, Technical report, Department of Computer Science, Indiana Uni-

versity, Bloomington, Indiana 47405.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). Equa-

tion of state calculations by fast computing machines, Journal of Chemical Physics

21(6): 1087{1092.

Minsky, M. and Papert, S. (1969). Perceptrons. An introduction to computational

geometry, The MIT Press, Cambridge, London.

Miyake, S. and Fukushima, K. (1984). A neural network model for the mechanism of

feature-extraction, Biological Cybernetics 50: 377{384.

Moody, J. E. (1992). The e�ective number of parameters: An analysis of generalization

and regularization in nonlinear learning systems, Advances in Neural Information

Processing Systems 4: 847{854.

Mundy, J. L., Zisserman, A. and Forsyth, D. (eds) (1993). Applications of Invariance

in Computer Vision, Lecture Notes in Computer Science, Springer-Verlag, Berlin.

Nowlan, S. and Hinton, G. (1992a). Simplifying neural networks by Soft-Weight Shar-

ing, Neural Computation 4(4): 473{493.

Nowlan, S. J. and Hinton, G. E. (1992b). Adaptive Soft Weight Tying using gaussian

mixtures, Advances in Neural Information Processing Systems 4: 993{1000.

Ohlsson, M. (1992). Extensions and explorations of the elastic arms algorithm, Techni-

cal Report LU TP 92-28, Department of Theoretical Physics, University of Lund,

S�olvegatan 14A, S-22362 Lund, Sweden.

Omlin, C. W. and Giles, C. L. (1992). Training second-order recurrent neural networks

using hints, in D. Sleeman and P. Edwards (eds), Machine Learning: Proceedings

of the Ninth International Conference, Morgan Kaufmann, San Mateo, CA.

Perantonis, S. J. and Lisboa, P. J. (1992). Translation, rotation, and scale invariant

pattern recognition by higher-order neural networks and moment classi�ers, IEEE

Transactions on Neural Networks 3(2): 241{251.

Pintsov, D. A. (1989). Invariant pattern recognition, symmetry, and radon transforms,

Journal of the Optical Society of America (A) 6(10): 1544{1554.

BIBLIOGRAPHY 168

Pitts, W. and McCulloch, W. S. (1947). How we know universals: the perception of

auditory and visual forms, Bulletin of Mathematical Biophysics 9: 127{147.

Plaut, D. and Hinton, G. (1987). Learning sets of �lters using backpropagation, Com-

puter Speech and Language 2: 35{61.

Prem, E., Mackinger, M. and Dor�ner, G. (1993). Concept support as a method

for programming neural networks with symbolic knowledge, Proceedings of the

German Arti�cial Intelligence Conference, Springer Verlag, Berlin-Heidelberg.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical

Recipes in C : The Art of Scienti�c Computing, 2 edn, Press Syndicate of the

University of Cambridge, Cambridge, U.K.

Redding, N. J., Kowalczyk, A. and Downs, T. (1993). Constructive higher-order net-

work algorithm that is polynomial time, Neural Networks 6: 997{1010.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain, Psychological Review 65: 386{408.

Rosenfeld, A. and Kak, A. C. (1982). Digital Picture Processing, Academic Press,

Orlando, FL.

Rubinstein, J., Segman, J. and Zeevi, Y. (1991). Recognition of distorted patterns by

invariance kernels, Pattern Recognition 24(10): 959{967.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986a). Learning representations

by back-propagating errors, Nature 323: 533{536.

Rumelhart, D., Hinton, G. and Williams, R. (1986b). Learning internal representations

by error propagation, in D. Rumelhart and J. McClelland (eds), Parallel Distrib-

uted Processing: Explorations in the Microstructures of Cognition, Vol. 1, MIT

Press, Cambridge, MA, pp. 318{362.

Salas, S., Hille, E. and Anderson, J. T. (1986). Calculus: One and several variables,

with analytic geometry, �fth edn, John Wiley & Sons, New York.

Sarle, W. S. (1994). Neural networks and statistical models, Proceedings of the Nine-

teenth Annual SAS Users Group International Conference.

Schmidt, W. A. and Davis, J. P. (1993). Pattern recognition properties of various

feature spaces for higher order neural networks, IEEE Transactions on Pattern

Analysis and Machine Intelligence 15(8): 795{801.

BIBLIOGRAPHY 169

Segman, J., Rubinstein, J. and Zeevi, Y. Y. (1992). The canonical coordinates method

for pattern deformation: Theoretical and computational considerations, IEEE

Transactions on Pattern Analysis and Machine Intelligence 14(12): 1171{1183.

Simard, P., Victorri, B., Cun, Y. L. and Denker, J. (1992). Tangent Prop - a formalism

for specifying selected invariances in an adaptive network, Advances in Neural

Information Processing Systems 4: 895{903.

Sontag, E. D. (1992). Feedback stabilization using two-hidden-layer nets, IEEE Trans-

actions on Neural Networks 3: 981{990.

Spirkovska, L. and Reid, M. B. (1994). Higher-order neural networks applied to 2D

and 3D object recognition, Machine Learning 15(2): 169{199.

Squire, D. M. and Caelli, T. M. (1995). Shift, rotation and scale invariant signatures

for two-dimensional contours, in a neural network architecture, to appear in the

Proceedings of the 1st International Conference on the Mathematics of Neural Net-

works and Applications (MANNA 95), Lady Margaret Hall, Oxford, published as

a special edition of Annals of Mathematics and Arti�cial Intelligence, J.C. Baltzer

Scienti�c Publishing Company, Basel - Switzerland.

Srinivasa, N. and Jouaneh, M. (1992). A neural network model for invariant pattern

recognition, IEEE Transactions on Signal Processing 40(6): 1595{1598.

Srinivasa, N. and Jouaneh, M. (1993). An invariant pattern recognition machine using a

modi�ed ART architecture, IEEE Transactions on Systems, Man and Cybernetics

23(5): 1432{1437.

Srinivasan, V., Bhatia, P. and Ong, S. (1994). Edge detection using a neural network,

Pattern Recognition 27(12): 1653{1662.

Tebelski, J. and Waibel, A. (1990). Large vocabulary recognition using linked predictive

networks, IEEE Proceedings of the 1990 International Conference on Acoustics,

Speech and Signal Processing, IEEE.

Vanderkooy, G. E. (1996). Line matching for uncalibrated cameras using projective

invariants, Technical report, Vision and Electronic Measurement Laboratory, De-

partment of Mechanical Engineering, University of Victoria, Canada.

Waibel, A., Jain, A., McNair, A., Saito, H., Hauptmann, A. and Tebelski, J. (1991).

JANUS: A speech-to-speech translation system using connectionist and symbolic

processing strategies, IEEE Proceedings of the 1991 International Conference on

Acoustics, Speech and Signal Processing, IEEE.

BIBLIOGRAPHY 170

Wechsler, H. (1990). Computational Vision, Academic Press Inc., 1250 Sixth Avenue,

San Diego, CA 92101.

Weiss, I. (1993a). Geometric invariants and object recognition, International Journal

of Computer Vision 10(3): 207{231.

Weiss, I. (1993b). Noise-resistant invariants of curves, IEEE Transactions on Pattern

Analysis and Machine Intelligence 15(9): 943{948.

Widrow, B. and Ho�, M. E. (1960). Adaptive switching circuits, IRE WESCON Con-

vention Record, IRE, New York, pp. 96{104.

Wiles, J. and Elman, J. (1995). Learning to count without a counter: A case study

of dynamics and activation landscapes in recurrent networks, Proceedings of the

Seventeenth Annual Conference of the Cognitive Society, MIT Press, Cambridge,

MA.

Wiles, J. and Ollila, M. (1993). Intersecting regions: The key to combinatorial structure

in hidden unit space, Advances in Neural Information Processing Systems 5: 27{33.

Winther, O., Lautrup, B. and Zhang, J.-B. (1995). Optimal learning in multilayer

neural networks, Technical Report 95-200, CERN, Theory Division, 1211 Gen�eve

23, Switzerland.

Zetzsche, C. and Caelli, T. (1989). Invariant pattern recognition using multiple �lter

image represtations, Computer Vision, Graphics and Image Processing 45: 251{

262.

