INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11

mpEG00/M 6099

May/June 2000, Geneva, Switzerland

Title: MRML: A Communication Protocol for Content-Based Multi Media Retrieval
Status: Proposal
Source: Computer science department of the University of Geneva, Monash University

(Melbourne, Australia), EPFL (Lausanne, Switzerland), DKFZ Heidelberg
(Germany), CWI Amsterdam

Authors: Wolfgang Miiller, Henning Miiller, Stéphane Marchand-Maillet, Thierry Pun,
David McG. Squire, Zoran Pecenovic, Christoph Giess, Arjen P. de Vries

1 Abstract

In this paper we propose the Multimedia Retrieval Markup Language (MRML), a communication
protocol based on an XML DTD. MRML was designed to allow standardized communication between
Content Based Image Retrieval Systems (CBIRSs) and their clients.

MRML separates the query shipping task both from the content representation and the actual query
formulation. Because of its flexibility we suggest the integration of MRML into the XM software. In our
opinion this would facilitate experiments on different query paradigms within the MPEG-7 XM.

The following sections will motivate the need for MRML, and they will emphasize the differences in
scope and realization between the content description MPEG-7 and the query markup language MRML.
We consider that it’s these differences that make MRML a useful tool for the XM.

We have published MRML parsing code under Perl, Java and C++. We are currently designing an
automatic CBIRS benchmark based on MRML.

2 Introduction

Almost every content-based image retrieval system (CBIRS) is a hard-wired connection between an
interface and the functional parts of a program. Some programs provide easy-to-use web interfaces [1],
while others need to be installed locally [2] and may be specific to particular operating systems. The reuse
of components in CBIR, e.g. user interfaces, is thus very sparse. This is not only a time-consuming
problem, since everything needs to be developed anew for each system, but it makes the sharing of user
data and the comparison of system performances difficult.

In order to address these problems, Y.-C. Chang et al. [3] proposed a query taxonomy for multimedia
databases. They proposed an initial formulation of the requirements for a system enabling communication
between multimedia databases and clients. However, this approach is not yet translated into an extensible
protocol.

In this paper we present the Multimedia Retrieval Markup Language (MRML): an XML-based markup
language for multimedia queries. MRML was designed to facilitate a bottom-up development approach,
which separates the communication problem from the search for the best query language for multimedia
databases. In other words, not only it is designed to fulfill the short-term needs of the image database
research community, but it is also designed to cater for its long-term needs.

The development of standard query languages, together with standard methods for transmitting queries
and data, can improve the interoperability of CBIRSs and thus increase the use and usefulness of
multimedia databases. SQL and ODBC are examples of such developments for relational databases. The
aim of MRML, however, is more similar to that of the DICOM protocol [4], which promoted the
interoperability of medical imaging systems from different vendors. In summary, we address the urgent
need for common tools which will facilitate the development and evaluation of multimedia database
systems. By this means, we aim to facilitate the development of common benchmarks for CBIRS
performance, similar those used for textual information retrieval [5].

The query-by-example (QBE) paradigm with relevance feedback (including browsing) is the search
paradigm employed by most current CBIRSs. We therefore provide an extensible QBE facility within
MRML. Further, some MRML- compliant tools have been developed and made freely available under the
GNU Public License [21,24]. These are described briefly in Section 3, and include a CBIR search engine
(Viper), which acts as a server, and an interface (SnakeCharmer), which acts as a client. Scripts (mostly
Perl scripts) have also been made available, which provide a basis for the creation of standard CBIRS
benchmarks. An overview of various evaluation methods is given in [6], where the use of freely-available
annotated image collections (such as [7]) as test datasets is advocated.

In order to be useful for research, MRML needs to be a "living standard": research groups will need to be
able to test and use extensions without having to ask a committee for approval. We therefore employ a
development model which permits phases of independent growth with subsequent code merging. In
Section 4, we present the main features of MRML and, in Section 5, we show an example of how MRML
can be extended to suit particular needs while staying coherent with the common standard.

We found that MRML’s properties lend themselves to rapid prototyping of multimedia retrieval systems.
This allows experimenting with different query formulation approaches, and the mixing of different query
languages. We believe that all these properties can make MRML a useful tool for the MPEG-7 XM,
notably in experimenting on different query and interaction types using MPEG-7 and the relation between
MPEG-7 and different indexing and querying methods.

3 Viper, CIRCUS and SnakeCharmer

MRML was initially designed to facilitate cooperation between research groups. The main programs for
our testbed originate from the Ecole Polytechnique Fédérale de Lausanne (CIRCUS and SnakeCharmer)
and from the University of Geneva (Viper). In this testbed, we use MRML to link a single interface
(SnakeCharmer) to two different CBIRS (CIRCUS and Viper).

Viper' is an image search engine based on techniques commonly used in text retrieval and thus offers
efficient access to a very large number of possible features (more than 80,000 simple colour and texture
features, both local and global). Each image contains only a subset of these features. Access to images
containing given features is provided by an inverted file, a standard access technique in text retrieval. The
emphasis in Viper is on adapting the system response according to interaction with a user - positive and
negative relevance feedback is accepted over several steps. Detailed descriptions of Viper may be found
in [8, 9].

CIRCUS” is a server framework supporting multiple image retrieval methods and algorithms. Currently
four methods are implemented. The first applies an adaptation of Latent Semantic Indexing [10] to image
features describing local and global colour and texture, as well as global layout and optional keywords.
The second is a texture/layout-specific method based on wavelet maxima moments. It extracts a set of
contours from the image at various levels of detail, invariant to scale, translation, and partially to

! http://viper.unige.ch/
2 http://Icavwww.epfl.ch/CIRCUS

illumination changes. The third approach is texture- specific, it describes textures by computing the
parameters of a Hidden Markov Model governing the coefficients of a wavelet decomposition of a
textured image. The similarity is evaluated using the Kulbach-Leibler distance between two distributions.
The last method is a fast, wavelet packet-based, approximation of the Principal Component Analysis,
based on the features used by the other methods. It is the most scalable and fastest of the implemented
methods. SnakeCharmer (figure 1) is an MRML-compliant client application. It is written in JAVA for
portability and offers query by multiple positive and negative examples, query history, multiple collection
and algorithm selection, a scatter plot of the results according to various aspects of similarity and a basket
for user-selected images.

% ?
s ———
Collaction TSR 2500 Mathod Classic IDF —h 30 | Lexical] B

Simple Query & Results | RESUIEVISUAIIaEGHT
el ki

Itsr‘\ 0352_smalljpg neutral IQuerymg

FIG 1: The SnakeCharmer JAVA interface for Viper and CIRCUS

4 Multimedia Retrieval Markup Language

MRML? is formally specified in [11]. It provides a framework that separates the query formulation from
the actual query shipping. It is designed to markup multi-paradigm queries for multimedia databases.
MRML enables the separation of interface and query engine and thus eases their independent
development.

MRML can be embedded into an existing system with little effort. First, it is XML-based, meaning that
standard parsers can be used to process the communication messages. Further, the code for an example
MRML-compliant CBIR system is freely-available and provides the basic implementation of both ends of
an MRML-based communication toolkit. MRML is currently in a testing phase at several universities and
further applications based on this protocol such as benchmark systems and meta-query engines are under
development. MRML is designed to allow extension by independent groups. By this means, it provides a
research platform for extensions which later may become a part of common MRML.

4.1 Design goals of MRML

It is important for the following sections to keep in mind the priorities which we took into account during
the design of MRML.

3

http://www.mrml.net/

Interoperability: interoperability is an obvious short-term need of the CBIRS community. The fact that
the interface between CBIRS client and server is not specified hampers research. Topics that could
benefit from interoperability include:

e Meta-query engines query several "normal" query engines and assemble the results [12]. Constructing
a meta-query engine would require defining a protocol abstraction layer corresponding to each of the
different query embedded in the system. Using a common protocol would save a substantial amount
of work.

¢ Human-computer-interaction aims at comparing the impact of different user interfaces on the
performance of identical query engines, or test several engines with the identical interfaces. In this
context, by ensuring the compatibility between engines and interfaces, MRML would ease this type
of evaluation.

e Evaluation of query engines: Thanks to MRML, one can design a benchmark package that connects
to a server, sends a set of queries and evaluates the results.

Extensibility without administration overhead: it was our goal to provide a communication protocol
which can be extended without having to ask a standardization body for permission. MRML enables
independent development of extensions. As we will describe in Section 4.1 we invite MRML users to
render their extensions accessible at [22]. Later, stable extensions can be added to new common versions
of MRML.

Common log file format: The whole area of CBIRS is craving for ground truth or other user data.
MRML provides a common, human readable, easy to analyse format for logging communication between
CBIRS client and server. MRML contains a maximum of data which might be of interest for computer
learning purposes. If needed, extensions of MRML can be designed in order to send additional data.

Simplicity of implementation: everything was designed so as to minimize the implementation overhead
incurred when using MRML, while keeping a maximum of flexibility. MRML only uses a subset of the
features of XML in order to maximise the number of tools that can use MRML.

4.2 Features of MRML

MRML-based communications have the structure of a remote procedure call: the client connects to the
server, sends a request, and stays connected to the server until the server breaks the connection. The
server shuts down the connection after sending the MRML message which answers the request. This
connectionless protocol has the advantage of easing the implementation of the server. To limit the
performance loss caused by frequently reconnecting, it is possible to send several requests as part of a
single MRML message. The extension of MRML to a protocol permitting the negotiation of a permanent
connection is also planned.

MRML, in its current specification (and implementation) state, supports the following features:
e request of a capability description from the server,

e selection of a data collection classified by query paradigm; it is possible to request collections which
can be queried in a certain manner,

e selection and configuration of a query processor, also classified by query paradigm; MRML also
permits the configuration of meta-queries during run time,

o formulation of QBE queries,
e transmission of user interaction data.

The final feature reflects our strong belief that affective computing [13] will soon play a role in the field
of content-based multimedia retrieval. MRML already supports this by allowing the logging of some user
interaction data. In particular, this is the case for the history-forward and history-backward functionalities
of the SnakeCharmer interface.

Why XML and not CORBA? There are important reasons for using XML rather than a communication
framework such as CORBA as a basis for the implementation of MRML. The first is that when using
XML no large communication framework is necessary, as it is for CORBA. Secondly, MRML offers a
common human-readable format for log files. Having a simple common format for user data will make it

easier for research groups to share this type of data. Together with common free image collections,
MRML-compliant systems will form a powerful tool for collecting and sharing CBIR user interaction
data.

Another reason for the use of XML as a basis for MRML is the large number of free XML tools available
such as parsers and tools to evaluate files in XML format (XML Query Language). XML is about to
become the main description language for all kinds of meta data thus ensuring the long-term support of its
specifications.

4.3 Graceful degradation: independent development on a common base

Graceful degradation is the key to successful independent extension of MRML. The basic principles can
be summarised as follows:

e servers and clients which do not recognize an XML element or attribute encountered in an MRML
text should completely ignore its contents,

e extensions should be designed such that all the standard information remains available to the generic
MRML user (see examples in Section 6).

These principles provide guidelines for independent extensions of MRML.

To avoid conflicts between differing extensions of MRML, we plan to maintain or promote a central
database for the registration and documentation of MRML extensions. This would also facilitate the
"translation" between user logs which contain extended MRML.

4.4 Logging onto a CBIR server

An MRML server listens on a port for MRML messages on a given TCP socket. When connecting, the
client requests the basic properties of the server, and waits for an answer. Skipping standard XML
headers, the MRML code looks like this:

<mrml>
<get-server-properties />
</mrml>

The server then informs the client of its capabilities. This message is empty in the current version of
MRML, but it allows for the extension of the protocol:

<mrml>
<server-properties />

</mrml>

Goal of this tag is to provide a stub for negotiation which influences the whole communication, like e.g.
the opening of a permanent, possibly encrypted connection.

Further negotiation between client and server may depend on the user, so before further negotiation we
have to open a session for the user:

<mrml>
<open-session
user-name="A. User" session-name="a session" />
</mrml>

which will be answered by an acknowledgement signal containing the ID of the session just opened. We
regard the concept of sessions as very important, as it allows multi-user servers and across-session
learning. Of course, it is possible to close and rename sessions.

Now one can request a list of collections, which are available on the server:
<mrml session-id="s-33">

<get-collections />

</mrml>

The answer will be a list of collections, with a description of the ways the collection has been indexed,
encapsulated in a query-paradigm-1ist tag.

Similarly, the client can request a list of algorithms (i.e. query methods), which can be used on the server.
Each of the algorithm tags returned also contains a query-paradigm-1ist describing the way the
algorithm can interact with the user, as well as which indexing methods are needed for employing the
algorithm.

The user is now able to choose on his client an algorithm/collection combination which suits his needs,
and in which the query-paradigm-lists of collection and algorithm have match. The matching of query-
paradigm-lists is described in [11].

4.5 Interface configuration

The client can then request property sheet descriptions from the server. Different algorithms will have
different relevant parameters which should be user- configurable (e.g. feature sets, speed vs. quality).
Viper, for example, offers several weighting functions [15] and a variety of methods for, and levels of,
pruning. All these parameters are irrelevant for CIRCUS. Thanks to MRML property sheets, the interface
can adapt itself to these specific parameters. At the same time, MRML specifies the way the interface will
turn these data into XML to send them back to the server. The interested reader is referred to [11] for
details.

4.6 Query Formulation

The query step is dependent on the query paradigms offered by the interface and the search engine.
MRML currently includes only QBE, but it has been designed to be extensible to other paradigms.

A basic QBE query consists of a list of images and the corresponding relevance levels assigned to them
by the user. In the following example, the user has marked two images, the image 1.jpg positive
(user-relevance="1") and the image 2.jpg negative (user-relevance="-1"). All query
images are referred to by their URLs.

<mrml session-id="1" transaction-id="44">
<query-step session-id="1"
resultsize="30"
algorithm-id="algorithm-default">
<user-relevance-list>
<user-relevance-element
image-location="http://viper.unige.ch/1.jpg"
user-relevance="1"/>
<user-relevance-element
image-location="http://viper.unige.ch/2.jpg"
user-relevance="-1"/>
</user-relevance-list>
</query-step>
</mrml>
The server will then return the retrieval result as a list of images, again represented by their URLs.

Queries can be grouped into transactions. This allows the formulation and logging of complex queries.
This may be applied in systems which process a single query using a variety algorithms, such as the split-
screen version of TrackingViper [16] or the system described by Lee et al. [17]. It is important in these
cases to preserve in the logs the knowledge that two queries are logically related one to another.

5 Extending MRML

This section gives an elaborate example on how to extend MRML. Later we address the topic of the
relation from MRML to binary data. In the end of this section we propose a development model that uses
a central documentation server to foster the common use of MRML extensions.

5.1 Query by Structured Annotation DS: and Example for Extending MRML

In the following we demonstrate the ease with which MRML can be intermixed with MPEG-7 content
descriptions. We describe a demonstration of the Structured Annotation DS (in the following abbreviated
as SADS) presented in M5738. Within this demonstration we want to enable the user to formulate
queries in the SADS, and then send them to the appropriate query processor. In order to avoid conflicts
with existing MRML we encapsulate the SADS in a special tag: mpeg-7-sads. We instructed the
SADS query processor to expect SADS as a direct descendant of query-step. This leads to the
follwing solution:

<mrml session-id="1" transaction-id="44">
<query-step session-id="1"
resultsize="30"
algorithm-id="sads-processor">
<!— here follows an MRML extension -->

<mpeg-T7-sads>

<theme>
<themeObject>
<head>polar bear</head>
<modifier>young</modifier>
</themeObject>
<setting>leafless bushes</setting>
</theme>
<proposition>
<Agent>
<head>polar bear</head>
<modifier>young</modifier>
</Agent>
<setting>leafless bushes</setting>
</proposition>
<proposition>
<Object>
<head>polar bear</head>
<modifier>young</modifier>
</Object>
<setting>leafless bushes</setting>
</proposition>

</mpeg-T7-sads>
<!— here could be some other MRML -->
</query-step>
</mrml>

We regard this solution as a good initial solution for our demo. However, in order to maximize the use of
the new tag, we are planning to move it lower into the hierarchy, giving the possibility to attach relevance
levels to the SADS, giving also the possibility to have a weighted combination of multiple SADS. This
gives also the possiblity to weight the SADS queries in relation to (possible non-MPEG-7) media items
that were given as example:

<mrml session-id="1" transaction-id="44">

<query-step session-id="1"
resultsize="30"
algorithm-id="sads-processor">
<user-relevance-list>
<]—NOTE: Here we have a simple OBE element containing NON-MPEG-Content -->
<user-relevance-element
image-location="http://viper.unige.ch/1.jpg"
user-relevance="1"/>
<!—NOTE: Here we have the same SADS-tag as before, with a relevance attached.
However, we can use it in more flexible ways and weight it against
the user-relevance-element -->

<mpeg-7-sads user-relevance="0.5">

<theme>
<themeObject>
<head>polar bear</head>
<modifier>young</modifier>
</themeObject>
<setting>leafless bushes</setting>
</theme>
<proposition>
<Agent>
<head>polar bear</head>
<modifier>young</modifier>
</Agent>
<setting>leafless bushes</setting>
</proposition>
<proposition>
<Object>
<head>polar bear</head>
<modifier>young</modifier>
</Object>
<setting>leafless bushes</setting>
</proposition>

</mpeg-7-sads>
</user-relevance-list>
</user-relevance>

Please note, that a query processor which knows only standard MRML will simply ignore the document
subtree contained in the mpeg-7-sads tag. Obviously this mechanism is very flexible and easily
adaptable. Extensions keep existing frameworks intact.

5.2 MRML and Binary data:

MRML's preferred mechanism for transferring binary data is to send the URL where the data can be
found. Binary data is then retrieved using the URL. As it is a primary goal of MRML to enable the
sharing of logging data we suggest transferring big chunks of data as follows.

Binary data that stays constant over several sessions (i.e. images and other media items contained in the
queried collection) should be transfered using their URL, as described above. This keeps communication
log files relatively small, yet data is accessible for everyone.

Binary data that changes during the query process (e.g. a file containing an example image for a QBE
query that is not accessible by the web) should be transferred using two attributes. One of the attributes
should contain the base64-encoded binary data, the other one the corresponding MIME type. However,

in most cases, it is preferable to design proper extensions to MRML which provide the best accessibility
and readability of the resulting logs.

5.3 The MRML development model

As it has been stated many times throughout this article, MRML allows each developer to extend MRML
to his needs. In particular, these extensions can coexist, and a notification of a central body is not
necessary for making these extensions work. However, to maximize the usefulness of MRML the authors
are presently setting up a database which contains documentation of extensions to MRML. It is also
intended to provide a forum for groups which want to extend MRML into similar directions.

We propose to develop extensions to MRML in the following fashion. Search first the page
http://www.mrml.net/extensions/ [23] for documentation of extensions which might already do what you
want.

If there exist extensions for your needs,
e implement the existing extension

e double-check with the author of the existing extension that the documentation has been understood in
the right way

e add your name and your affiliation to the list of people/groups who are using this extension. This list
is kept on www.mrml.net [21].

If not do not exist extensions for your needs,
e implement the extension

e submit documentation for your extension along with your name and your affiliation to
www.mrml.net.

The information contained on http:/www.mrml.net/extensions/ will be useful both for analysing logs and
for merging extensions, once an extension has proven more useful than others.

6 Further use of MRML

In this article, we have presented a stable, extensible and useful framework for the use in CBIRS and
other multimedia retrieval systems. In the sequel, we shortly described tools that can easily be
implemented using existing features of the MRML framework.

6.1 Meta query engines
We are currently conceiving a meta query engine which queries MRML compliant servers.

Meta query engines running under MRML will start a handshaking procedure, establishing for each of the
attached servers the available collections and algorithms. The meta query can then assemble this
information into a property sheet that can be presented to the user via a standard MRML interface.

After configuration the meta-query engine will pass arriving queries onto the attached servers, returning
an assembled result. We plan to use methods similar to those described in [12].

6.2 Benchmarks

Only preliminary steps towards developing common benchmarks have been taken by the CBIR
community - a comparison of evaluation techniques may be found in [6]. We are currently working on a
more profound and flexible benchmarking system based on the results of this research.

7 Use of MRML for the MPEG-7 XM

The separation of query-shipping and query formulation/content-shipping that is enabled by MRML has
increased our flexibility in trying new algorithms and query formulation methods. In other words,
building an MRML-compliant system has provided us with a rapid prototyping environment for CBIRS
query processors, as well as CBIRS query languages. The design patterns implied by MRML allowed us
to use experimental and more stable query processors together in one application and compare them.

We believe that these properties would be of use for the MPEG-7 XM, which is by definition a software
project in motion. Looking at the sources of the XM, we are very optimistic that adding MRML
capabilities to the XM will cause an amount of work which is modest when compared to the benefits it
could bring: our existing MRML code can be linked to a Perl interpreter. As a consequence, it is very
simple to link this code to the XM in a preliminary way and to evaluate the benefits of linking XM with
MRML handling code. A full, native C++ XM/MRML link could then be established gradually by soft
migration.

Because of its flexibility and its extensible design, we also regard MRML as a useful tool for
experimenting parts of MPEG-7 which are at the limit of the scope: what is already an application, and
what is still content description?

8 Conclusion

The development of MRML and the first MRML-compliant tools has established a common framework
for the fast development of CBIR applications. To our knowledge, MRML is the first general
communication protocol for CBIR actually implemented. The source code for the interface and the query
engine is freely available. This should help developers of retrieval engines and developers of user
interfaces to develop complete systems on the basis of existing components.

Tests have shown the stability of the protocol and our test components. Since MRML free and extensible,
the availability of more applications and tools supporting such a protocol will further facilitate the
development of CBIR applications supporting a diversity of query paradigms.

More important, in our opinion, is the fact that the adoption of MRML will lead to the possibility of
comparing different CBIR applications objectively. It will make it easy to develop common benchmarks
for all MRML-compliant systems, similar to those which exist in the database and information retrieval
communities.

Furthermore, the possibility of sharing MRML user logs will provide a useful tool for the sharing of user
interaction data.

We believe that all these properties, combined with MRML’s ease of use will make MRML a useful tool
for the further evolution of the MPEG-7 XM software.

Acknowledgements

This project is supported by the Swiss National Foundation for Scientific Research under grant number
2000-052426.97. 10

9 References

1. Surfimage webdemo. web page: http://www-rocq.inria.fr/cgi-bin/imedia/surfimage.cgi (1999)

2. QBICTM - IBM's Query By Image Content. web page: http://wwwqbic.almaden.ibm.com/~gbic/
(1998)

3. Chang, Y.-C., Bergmann, L., Smith, J. R., Li, C.-S.: Query taxonomy of multimedia databases. In:
Panchanathan et al. [19]. (SPIE Symposium on Voice, Video and Data Communications)

4. Revet, B.: DICOM Cook Book for Implementations in Madalities. Philips Medical Systems,
Eindhoven, Netherlands (1997)

5. Vorhees, E. M., Harmann, D.: Overview of the seventh text retrieval conference (TREC-7). In: The
Seventh Text Retrieval Conference. Gaithersburg, MD, USA (November 1998)

6. Miiller, H., Miiller, W., Squire, D. M., Pun, T.: Performance evaluation in content based image
retrieval: Overview and proposals. Tech. Rep. 99.05, Computer Vision Group, Computing Centre,
University of Geneva, rue Général Dufour, 24, CH-1211 Geneéve, Switzerland (dec 1999)

7. Annotated groundtruth database. Department of Computer Science and Engineering, University of
Washington, web page: http://www.cs.washington.edu/ research/imagedatabase/groundtruth/ (1999)

8. Miiller, H., Squire, D. M., Miiller, W., Pun, T.: Efficient access methods for content based image
retrieval with inverted files. In: Panchanathan et al. [19]. (SPIE Symposium on Voice, Video and Data
Communications)

9. Squire, D. M., Miiller, W., Miiller, H., Raki, J.: Content-based query of image databases, inspirations
from text retrieval: inverted files, frequency-based weights and relevance feedback. In: The 11th
Scandinavian Conference on Image Analysis (SCIA'99). Kangerlussuaq, Greenland (June 7-11 1999)

10.Pecenovic, Z.: Image retrieval using Latent Semantic indexing. Final year graduate thesis,
AudioVisual Communications Lab, Ecole Polytechnique F'ed'erale de Lausanne, Switzerland (June 1997)

11.Miiller, W., Pecenovic, Z., de Vries, A. P., Squire, D. M., Miiller, H., Pun, T.. MRML: Towards an
extensible standard for multimedia querying and benchmarking - Draft proposal. Tech. Rep. 99.04,
Computer Vision Group, Computing Centre, University of Geneva, rue Général Dufour, 24, CH-1211
Geneve, Switzerland (October 1999)

12.Beigi, M., Benitez, A. B., Chang, S.-F.: Metaseek: A content-based meta-search engine for images. In:
Symposium on Electronic Imaging: Multimedia Processing and Applications - Storage and Retrieval for
Image and Video Databases VI, IST/SPIE'98, San Jose, CA (1998)

13.Picard, R. W.: Affective Computing. MIT Press, Cambridge (1997)

14 MPEG Requirements Group: MPEG-7: Context and objectives (version 10 Atlantic City). Doc.
ISO/IEC JTC1/SC29/WGT11, International Organisation for Standardisation (October 1998)

15.Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Tech. Rep. 87-881,
Department of Computer Science, Cornell University, Ithaca, New York 14853-7501 (November 1987)

16.Miiller, W., Squire, D. M., Miiller, H., Pun, T.: Hunting moving targets: an extension to Bayesian
methods in multimedia databases. In: Panchanathan et al. [19]. (SPIE Symposium on Voice, Video and
Data Communications)

17.Lee, C. S., Ma, W.-Y., Zhang, H.: Information Embedding Based on User's Relevance Feedback for
Image Retrieval. In: Panchanathan et al. [19]. (SPIE Symposium on Voice, Video and Data
Communications)

18.Squire, D. M., Miiller, W., Miiller, H.: Relevance feedback and term weighting schemes for content-
based image retrieval. In: Huijsmans, D. P., Smeulders, A.W. M., eds., Third International Conference On
Visual Information Systems (VISUAL'99), no. 1614 in Lecture Notes in Computer Science. Springer-
Verlag, Amsterdam, The Netherlands (June 2-4 1999)

19.Panchanathan, S., Chang, S.-F., Kuo, C.-C. J., eds.: Multimedia Storage and Archiving Systems IV
(VVO02), vol. 3846 of SPIE Proceedings, Boston, Massachusetts, USA (September 20-22 1999). (SPIE
Symposium on Voice, Video and Data Communications)

20.Audrey M. Tam, Clement H. C. Leung: Semantic Content Retrieval and Structured Annotation:
Beyond Keywords. ISO/IEC JTC1/SC29/WGI11/M5738 (MPEG-7 meeting, March 2000,
Noordwijkerhout).

21. http://www.mrml.net/

22. http://www.mrml.net/download/

23. http://www.mrml.net/extensions/
24. The GNU Public License http://www.gnu.org/copyleft/epl.html

Fhttp: /fviper. unige. ch/deno new. html
1

Fig. 2. Demonstration of property sheets in SnakeCharmer. The user has the choice to modify the default
settings or not. If he decides to modify the default settings, widgets which enable him to do so pop up,
which will be shown in figure 3.

Fig. 3. Demonstration of property sheets in SnakeCharmer. The user has the choice to modify the default
settings or not. If he decides to modify the default settings, widgets which enable him to do so pop up.
The image shows the state with all widgets shown, figure 2 shows the state, where the user has decided
not to modify any default selections.

