
UNIVERSITE DE GENEVE

CENTRE UNIVERSITAIRE
D'INFORMATIQUE
GROUPE VISION

Date:

No
April, 1997

97.04

TECHNICAL REPORT

VISION

Invariance Signatures: Characterizing contours by

their departures from invariance

David McG. Squire Terry M. Caelli

Computer Vision Group

School of Computing, Curtin University of Technology

Bentley, W.A., AUSTRALIA

Computer Vision Group

Computing Science Center, University of Geneva

24 rue du G�en�eral Dufour, CH - 1211 Geneva 4 SWITZERLAND

e-mail: squire@cui.unige.ch tmc@cs.curtin.edu.au

Abstract

In this paper, a new invariant feature of two-dimensional contours is reported: the Invari-
ance Signature. The Invariance Signature is a measure of the degree to which a contour is
invariant under a variety of transformations, derived from the theory of Lie transformation
groups. Since it is derived from local properties of the contour, it is well-suited to a neural
network implementation. It is shown that a Model-Based Neural Network (MBNN) [7, 36] can
be constructed which computes the Invariance Signature of a contour, and classi�es patterns
on this basis. Experiments demonstrate that Invariance Signature networks can be employed
successfully for shift-, rotation- and scale-invariant optical character recognition.

1 Introduction

The ability to perceive the permanent features of the visual environment is something which humans
take for granted. It is hard to imagine a world in which we could not do so. In this paper we
are concerned in particular with the invariant perception of two-dimensional patterns under shift,
rotation and scaling in the plane. This corresponds to the ability of humans to recognize patterns
such as typed or handwritten characters independently of their size, orientation or position, which
they do unthinkingly when reading a document such as an engineering or architectural drawing.

The aim of any invariant pattern recognition technique is to obtain a representation of the
pattern in a form that is invariant under some transformations of the original image. It is often
claimed that an ideal technique would produce a representation of the pattern which was not only
invariant, but which also uniquely characterized the input pattern. This goal is not always as
desirable as it might seem.

In many pattern recognition problems, the aim is to produce a system which classi�es input
patterns as belonging to a particular class, rather than to identify uniquely every input pattern
presented. In such cases a unique representation for each possible input pattern can actually be a
disadvantage. All that is required is an invariant representation which retains enough information
for distinct classes to be distinguished. Indeed, if all members of a class are identical, or nearly
so, in the invariant representation this can greatly reduce the size of the training set required by
many recognition algorithms. The Invariance Signature provides a means of realizing this goal.

1.1 Prior Methods for Invariant Pattern Recognition

A large number of techniques for invariant pattern recognition has been proposed. They vary
greatly. Some treat the image as a pattern of pixels, others operate on higher level representations,
such as contours. Many are expensive in computation time and/or space. They have varying
degrees of sensitivity to noise. A brief review of popular techniques follows.

An approach that has long been popular is to seek an integral transform of the image which is
invariant under some speci�ed transformations. Most such techniques are based upon the Fourier
transform: in the transform domain the amplitude spectrum is invariant under shifts of the image
and the phase encodes the shift. Other invariances can be obtained by �rst performing a coordinate
transform so that the transformation with respect to which invariance is desired becomes a shift in
the new coordinate system [13, 29, 33]. Such transforms, in various guises, form the basis of many
invariant pattern recognition techniques [1, 6, 12, 23]. It is important to note that the transformed
image is of (at least) the same dimensionality as the original. The invariant component does not
uniquely characterize the input, and the issue of actually recognizing it is not addressed at all.

Integrals can also be used to compute geometrical moments of the image. Certain functions of
the moments are invariant under transformations of the image [18]. Geometrical moments are not
fault-tolerant, and generally produce disappointing pattern recognition results [39]. Better results
have been obtained using alternative sets, such as the Zernike moments [19]. Again, computing a
set of moments is expensive.

Matched Filtering is one of the oldest techniques for pattern recognition [2, 28]. Combined
with convolution it becomes cross-correlation: e�ectively an exhaustive search of the image for
all possible transformed versions of a template pattern. Some version of cross-correlation plays a
role in many invariant pattern recognition techniques [1, 6, 20, 23, 26, 40], despite the fact that it is

1

computationally-expensive, and this cost scales exponentially with the number of transformations
with respect to which invariance is desired.

In the above techniques, an invariant representation of the whole image is sought. Matching
is done on a pixel-by-pixel basis. A di�erent approach is to view an image as a set of parts and
relationships. For example, the angle between two lines is invariant under shifts, rotations and
scalings. The lines are parts, and the angle is their relationship. In \parts and relationships"
techniques, matching is done between abstracted properties of the image, rather than between
pixels. These techniques require some form of sub-graph matching [21], which is known to be an
NP-complete problem [2]. The challenge is thus to �nd an algorithm that can obtain an acceptable
solution in reasonable time. Explicit search may be satisfactory for su�ciently small graphs.
Another approach is relaxation labeling [21].

In this paper we are speci�cally interested in the invariant recognition of contours. There are
two approaches to contour recognition: the contour may be represented by an algebraic expression
�tted to the image, or treated as a group of pixels. Contour recognition is of particular interest
because there are many applications in which patterns naturally consist of line drawings (e.g.
character recognition, circuit diagrams, engineering drawings). Moreover, there is evidence that
the human visual system applies a contour-based approach to pattern recognition even when no
contour exists in the image: an implied contour is interpolated [8].

Perhaps the simplest contour-based technique is the Hough transform [2]. Variants of the
Hough transform occur frequently in the invariant pattern recognition literature [10, 22, 26]. The
Hough transform and its generalizations can be interpreted as cross-correlation techniques, where
the template is a parametric curve rather than an image [26].

Another approach is to compute invariants of the contour. This promises to avoid the expenses
of exhaustive methods such as the Hough transform. Algebraic invariants are well suited for use
with contours which can be expressed by an implicit polynomial f(x; y) = 0. An example is the
family of conic sections, which can be de�ned in matrix form: XTAX = 0: The coordinates can
be transformed so that A is diagonal. Thus properties of A invariant under similarity transforms
are invariant descriptors of the conic. One such feature is the determinant. In fact, any symmetric
function of the eigenvalues of A is an invariant. A must be obtained by �tting a polynomial to the
image { a di�cult and potentially computationally-expensive problem. A high resolution image of
the curve is required for accurate coe�cient estimation. The matching process, however, is cheap.

Di�erential Invariants arise when the points on a curve, x, are expressed as a function of a
parameter t, x = x(t), rather than by an implicit function. The natural shape descriptors in such
a representation are the derivatives dnxi

dtn
. These descriptors are local, since they are evaluated at t,

unlike the global descriptors derived using algebraic invariants. A di�erential invariant is a function
of the dnxi

dtn
which does not change under transformations of x and t. Various di�erential invariants

have been applied: curvature, torsion and Gaussian curvature, for instance, are all invariant under
Euclidean transformations [14]. Di�erential invariants are complete: a small set of invariants
contains all the essential information about the curve. Also, their locality makes them insensitive
to occlusion. Whilst elegant, its application requires the computation of high derivatives of the
contour, which is known to be error-prone. Moreover, these derivatives are raised to high powers,
magnifying the estimation error.

2 Lie Transformation Groups and Invariance

One approach to invariant pattern recognition is to consider how local features change under global
transformations. This leads naturally to the study of Lie transformation groups, which have been
a component of many, varied invariant pattern recognition techniques [11, 12, 15, 16, 29, 33, 37].

We derive a new shift-, rotation- and scale- invariant function of a two-dimensional contour,
the Invariance Measure Density Function. It is shown that several such functions can be combined
to yield an Invariance Signature for the contour. This Invariance Signature has several properties
that make it attractive for implementation in an MBNN: it is based on local properties of the
contour, so initial calculations are inherently parallel; it is statistical in nature, and its resolution
can be chosen at the designer's discretion, allowing direct control over the dimensionality of the
network implementation. The use of the Invariance Signature, however, is not limited to neural

2

implementations.
Whilst patterns are not represented uniquely by the Invariance Signature, it will be shown

in Section 5 that classes of patterns are represented su�ciently di�erently for optical character
recognition applications.

2.1 One Parameter Lie Groups in Two Dimensions

A Lie group is a continuous transformation group with a di�erentiable structure [29]. For our
purposes, the most interesting groups are the one-parameter Lie groups de�ned on the plane.
These include rotation, dilation and translation. They are smooth transformations of the form

x0 = �(x; y; ") y0 = �(x; y; "): (1)

The parameter " determines which element of the group the transformation is. For instance, if "0
corresponds to the identity element, we have

x0 = �(x; y; "0)= x y0= �(x; y; "0) = y: (2)

There is a vector �eld ~g =
�
gx gy

�T
associated with each Lie group G, which gives the

direction in which a point (x; y) is \dragged" by an in�nitesimal transformation under the group.
It is given by

gx(x; y) =
@�

@"

����
"="0

gy(x; y) =
@�

@"

����
"="0

: (3)

This vector �eld ~g allows an operator LG to be de�ned,

LG = gx
@

@x
+ gy

@

@y
: (4)

LGis called the generator of G, because it can be used to construct the �nite transformation
corresponding to the in�nitesimal dragging described in Eqs. (3).

2.2 From In�nitesimal to Finite Transformations

Consider the case in which the vector �eld specifying the in�nitesimal transformation at each point
(Eqs. (3)) is known. We wish to construct Eqs. (1), specifying the �nite transformation. We will
consider the transformation of x in detail. For a small change in the group parameter from the
identity element, " = "0 +�", we can approximate the change in x by

x0 = x+�x � x+�"
@�

@"

����
"="0

: (5)

We now wish to �nd a �nite transformation corresponding to n applications of the �" trans-
formation. This will approximate the �nite transformation corresponding to the group element
speci�ed by parameter " = n�". Let xi be the value of x

0 after i applications of the �" transfor-
mation. We obtain

x0 = x

x1 = x0 +
"

n
LGx0 =

�
1 +

"

n
LG

�
x

x2 = x1 +
"

n
LGx1

=
�
1 +

"

n
LG

�
x1

=
�
1 +

"

n
LG

�2
x

and thus

xn =
�
1 +

"

n
LG

�n
x:

(6)

3

In the limit as n!1, the approximation becomes exact, giving the �nite transformations

�(x; y; ") = lim
n!1

�
1 +

"

n
LG

�n
x �(x; y; ") = lim

n!1

�
1 +

"

n
LG

�n
y: (7)

An example of the direct application of the derivation of the familiar rotation transformation using
Eqs. (7) may be found in [36].

2.3 Functions Invariant Under Lie Transformations

A function is said to be invariant under a transformation if all points of the function are mapped
into other points of the function by the transformation. Consider a function F (x; y). We wish to
determine its invariance with respect to a Lie transformation group G. Let

~g(x; y) =
�
gx(x; y) gy(x; y)

�T
(8)

be the associated vector �eld, and LG be the generator of G. F is constant with respect to the
action of the generator if

LGF = 0: (9)

This can be written in terms of the vector �eld as

rF � ~g(x; y) = 0: (10)

Now consider a contour C parameterized by t speci�ed by the implicit function

8t F (x(t); y(t)) = K: (11)

Since F is constant on the contour, we have

dF

dt
=

@F

@x

dx

dt
+

@F

@y

dy

dt
= 0: (12)

Combining Eqs. (10) and (12) shows that F is invariant under the Lie transformation generated
by LG if

dy

dx
=

gy
gx

: (13)

everywhere on the contour.
The condition derived in Eq. (13) has a very natural interpretation: a contour is invariant under

a transformation group G if the tangent to the contour at each point is in the same direction as
the vector �eld ~g corresponding to the in�nitesimal transformation that generates the group.

3 The Invariance Signature: From Local Invariance Mea-

sures to Global Invariance

We now propose a new shift-, rotation- and dilation-invariant signature for contours. We call this
an Invariance Signature, since it is derived from the degree to which a given contour is consistent
with invariance under a set of Lie transformation groups.

3.1 The Local Measure of Consistency

We have seen in Eq. (13) that in order for a contour C to be invariant under a transformation
group G the tangent to the contour must be everywhere parallel to the vector �eld de�ned by the
generator of the group. We now de�ne the Local Measure of Consistency with invariance under a
transformation group G at a point (x; y) on C, �G(x; y).

�G(x; y) =
����̂(x; y) � ĝG(x; y)��� (14)

4

The absolute value is used because only the orientation of the tangent vector is signi�cant, not the
direction. At each point both the tangent vector to the contour, ~�(x; y) and the vector �eld ~g(x; y)
are normalized:

ĝ(x; y) =
gx(x; y)̂{+ gy(x; y)|̂

+

q
g2x(x; y) + g2y(x; y)

(15)

and

�̂(x; y) =
{̂+ dy

dx
|̂

+

r
1 +

�
dy
dx

�2 ; (16)

where {̂ and |̂ are unit vectors in the x and y directions respectively. Substituting Eqs. (15) and (16)
in Eq. (14), we obtain

�G(x; y) =
1

+

r
1 +

h
gy(x;y)�gx(x;y)

dy

dx

gx(x;y)+gy(x;y)
dy

dx

i2 : (17)

3.2 The Invariance Measure Density Function

Eq. (14) is a mapping C 7! [0; 1], which gives a measure of the degree to which the tangent at
each point is consistent with invariance under G. We now seek a function which characterizes
the consistency of the entire contour C with invariance under G. Such a function is the density
function for the value of �G in [0; 1], I(�G), which we will call the Invariance Measure Density
Function. The more points from C that are mapped close to 1 by Eq. (14), the more consistent
C is with invariance under G. I(�G) is a descriptor of C, and we will show that I(�G) is invariant
under rotations and dilations of C. Translation invariance is obtained by choosing the centroid of
C as the origin of coordinates.

It is interesting to note that there is evidence from psychophysical experiments that a measure
of the degree of invariance of a pattern with respect to the similarity group of transformations
(rotations, translations and dilations) is important in human pattern recognition [5]. The measure
proposed here might be seen as a mathematical formalization of this notion. Moreover, its imple-
mentation in a neural network architecture is consistent with Caelli and Dodwell's statement [5,
p. 159] of a proposal due to Ho�man [15, 16]:

Ho�man's fundamental postulate was that the coding of orientation at various positions
of the retinotopic map by the visual system, discovered by Hubel and Wiesel [17] and others,
actually provides the visual system with \vector �eld" information. That is, the visual system,
on detecting speci�c orientation and position states (\�/P codes"), spontaneously extracts the
path curves (interpreted as visual contours) of which the local vectors are tangential elements.

First, however, we must establish the form of I(�G). Let C be parameterized by t : t 2 [t0; T].
The arc length s along C is

s(t) =

Z t

t0

s�
dx

dt

����
�

�2

+

�
dy

dt

����
�

�2

d� : (18)

The total length of C is thus S = s(T) =
H
C
ds. For well-behaved functions F (x; y), we can

construct s(t) such that we can reparameterize C in terms of s. Thus we can rewrite Eq. (14) to
give �G in terms of s. For simplicity, we will �rst consider the case in which �G is a monotonic
function of s, as shown in Figure 1. The Invariance Measure Density is:

I (�G) = lim
��G!0

���� �s

S��G

���� = 1

S

���� dsd�G
���� : (19)

I (�G) can be interpreted as the probability density function for �G at points (x(s); y(s)), where
s is a random variable uniformly distributed on [0; S]. It is clear that for the general case the

5

S s

1

ι ∆ι

s

ι G

∆ s

Figure 1: Local Measure of Consistency as a function of arc length.

function could be broken into piecewise monotonic intervals and their contributions to the density
summed. The general form for a speci�c value �G

0 is thus

I (�G
0) =

1

S

X
s2[0;S]:�G(s)=�G0

���� dsd�G
����: (20)

Theorem 1 The Invariance Measure Density, I (�G), is invariant under translations, rotations
and dilations of the contour C with respect to which it is calculated.

Proof That I (�G), de�ned in Eq. (20), is invariant under translations of the contour C is trivial,
since, as de�ned in Section 3.2, �G is calculated with the origin at the centroid of the contour
C. Rotation and dilation invariance can be proved by construction. Since the transformations
for rotation and dilation in the plane commute, we can consider a two-parameter Abelian group
corresponding to a rotation by an angle � and a dilation by a positive factor �. The coordinates
x and y are transformed according to

x0 = � (x cos�� y sin�) y0 = � (x sin�+ y cos�) : (21)

Consider the relationship between the arc length s(t) for the original parameterized contour
(x(t); y(t)) and s0(t), after the coordinates are transformed according to Eqs. (21). We �nd that

dx0

dt
= � cos�

dx

dt
� � sin�

dy

dt

dy0

dt
= � sin�

dx

dt
+ � cos�

dy

dt
: (22)

Combining these, we obtain

�
dx0

dt

�2

+

�
dy0

dt

�2

= �2

"�
dx

dt

�2

+

�
dy

dt

�2
#
: (23)

This result can be substituted into Eq. (18), giving

s0(t) = �s(t): (24)

This indicates that the total arc length is S0 = �S. The derivative of s(t) is also scaled. Substituting

6

into Eq. (20), we obtain

I 0 (�G
0) =

1

S0

X
�G(s)=�G0

���� ds0d�G

����
=

1

�S

X
�G(s)=�G0

�

���� dsd�G
����

=
1

S

X
�G(s)=�G0

���� dsd�G
����

= I (�G
0) � (25)

Thus I (�G
0) is invariant under rotations and dilations of C.

3.3 Invariance Measure Densities For Speci�c Contours

To demonstrate the application of the Invariance Measure Density, we will evaluate I (�G) for a
speci�c contour. Let C be a square of side 2L centred at the origin, as shown in Figure 2. We

x

L

L

(x(t),y(t))

C

y

Figure 2: Square of side 2L.

will �nd the Invariance Measure Density for C with respect to rotation, ICrot
(�). By symmetry,

we need only �nd ICrot
for one side of the square. On the side indicated by the dashed line in

Figure 2, x and y can be expressed in terms of a parameter t as

x = L y = t; �L � t � L: (26)

Thus the arc length is s(t) = t+L, and the total is S = 2L. If _x(t) and _y(t) are the derivatives of
x and y with respect to t, Eq. (17) can be rewritten as

�Crot
(s) =

1r
1 +

h
gy(s) _x(s)�gx(s) _y(s)
gx(s) _x(s)+gy(s) _y(s)

i2 (27)

7

Here _x(t) = 0 and _y(t) = 1. The generator of the rotation group is

LR = �y @

@x
+ x

@

@y
: (28)

Eqs. (28) and (26) can be substituted into Eq. (27) to give

�Crot
(s) =

1q
1 +

�
s�L
L

�2 ; (29)

which can be inverted to yield

s = L

1 +

s
1

�2Crot

� 1

!
; (30)

di�erentiating,

ds

d�Crot

=
�L

�2Crot

�
1� �2Crot

� : (31)

Using Eq. (20), we arrive at our �nal result:

ICrot
(�Crot

) =
1

2L

X
�0
Crot

=�Crot

���� ds

d�Crot

����
�0
Crot

=
1

2L
� 2� L

�2Crot

�
1� �2Crot

�
=

1

�2Crot

�
1� �2Crot

� ; �Crot
2
�
1p
2
; 1

�
:

(32)

Note that, as required, the scale of the square L does not appear. The factor of 2 arises because
�Crot

is a symmetric function of s, so the sum has two terms. This function, shown in Figure 3, is
characteristic of the square.

0

5

10

15

20

25

30

0.75 0.8 0.85 0.9 0.95 1

�Crot

I C
r
o
t
(�
C
r
o
t
)

Figure 3: Invariance Density Measure with respect to rotation for a square.

8

3.4 Invariance Space: Combining Invariance Measure Densities

We now consider the case in which the Invariance Measure Density Function is calculated with re-
spect to a number of groups, and the results combined to provide a more complete characterization
of the transformational properties of a contour C. This operation maps each point from the two
dimensional image space to the interior of a unit hypercube in an n-dimensional invariance space,
where each of the n dimensions corresponds to a particular sort of invariance. Eq. (33) shows this
for the case of a three-dimensional invariance space where the dimensions correspond to the Local
Measure of Consistency � with respect to rotation, dilation and translation:

(x; y) 7! �
�rot �dil �trans

�T
: (33)

The distribution of points in this invariance space is characteristic of the contour C. This particular
three-dimensional invariance space will be used for the experimental application of Invariance Sig-
natures. Since each of the component invariance measure densities is invariant, this n-dimensional
Invariance Signature is invariant under rotations, dilations, translations (and re
ections) of the
input image.

The vector �elds for the generators of the transformation groups for rotation, dilation and
translation are given in normalized form. All can be derived using Eq. (3): for rotation invariance

~grot(x; y) =
1p

x2 + y2

� �y x
�T

; (34)

and for dilation invariance

~gdil(x; y) =
1p

x2 + y2

�
x y

�T
: (35)

The translation invariance case is somewhat di�erent. What is measured is the degree to which
the contour is \linear". The vector �eld used is constant for all (x; y), and the direction is given
by the unit eigenvector corresponding to the largest eigenvalue, ~e1, of the coordinate covariance
matrix of all points in the contour. The direction of this eigenvector is the principal direction of the
contour. Since ~e1 is calculated from the image each time it is required, this measure is invariant
under rotations, dilations and translations of the image. The vector �eld for the translation
invariance case is thus:

~gtrans(x; y) =
�
e1x e1y

�T
(36)

It should be noted that this representation of the image is not unique. The combination
of individual Invariance Measure Densities into an Invariance Space does, however, increase its
discriminating properties. As an example, removing two opposite sides of a square will not alter its
rotation or dilation Invariance Signatures, but it will change the translation Invariance Signature.
Likewise, a single straight line has the same translation Invariance Signature as any number of
parallel straight lines, however they are spaced. The rotation and dilation Invariance Signatures,
however, are sensitive to these changes.

3.5 Discrete Invariance Signatures

For a computer application of Invariance Signatures, a discrete version is required. The natural
choice is the frequency histogram of �G. For a continuous contour, this is obtained by dividing
the interval [0; 1] into n \bins" and integrating I(�G) over each bin. For bins numbered from b0 to
bn�1, the value in bin k is

bk =

Z k+1
n

k
n

I(�G)d�G: (37)

Since I(�G) is a probability density function, the sum of the values of the bins must be one.

9

1. Original Contour 2. Tangent Estimates

Figure 4: Example of a sampled contour and its estimated tangents.

When using sampled images, a true frequency histogram of the estimated local measures of
consistency may be used. The system designer must choose the number of bins, n, into which the
data is grouped. It will be seen in Section 5 that this choice is not arbitrary.

An example of a sampled contour and the estimated tangent vectors at each point is shown in
Figure 4. The circle indicates the centroid of the contour, and the dashed line shows the direction
of ~e1. The estimated discrete Invariance Signatures are shown in Figure 5, for 20 bins. It would

1. Rotation 2. Dilation 3. Translation

Figure 5: 20 bin discrete Invariance Signatures for the contour in Figure 4.

be expected that this \
ower"-shaped contour would have Invariance Signatures which re
ect a
quite strong dilation-invariant component corresponding to the approximately radial edges of the
\petals", and also a signi�cant rotation-invariant component due to the ends of the petals which
are approximately tangential to the radial edges. This is indeed what is observed in Figure 5.

4 The Invariance Signature Neural Network Classi�er

We propose a Model-Based Neural Network to compute the discrete Invariance Signature of an
input pattern and to classify it on that basis. It consists of a system of neural network modules,
some hand-coded and some trained on sub-tasks. A schematic diagram is shown in Figure 6. This
system will be referred to as the Invariance Signature Neural Network Classi�er (ISNNC).

Whilst the ISNNC appears complex, it retains the basic characteristics of a traditional feed-

10

Centroid Image

Invariant Vector
Field Generator Extractor

Local Orientation

Rotation Invariance
Signature Signature

Dilation Invariance
Signature

Translation Invariance

Conventional Neural
Network Classifier

in Input Image
Number of Ones

Computation

Input Image

n

Centroid Image

Rot x Rot y Dil x Dil y Trans x Trans y

Dominant Image
Orientation Unit

Y ComponentX Component

Dot Product Dot Product Dot Product

Rotation Invariance
Image

Dilation Invariance
Image

Binning Unit Binning Unit Binning Unit

Translation Invariance
Image

Final Classification

Figure 6: Invariance Signature-based contour recognition system.

forward neural network, or TNN (TNN will be used to describe a fully-connected, feed-forward
multilayer perceptron). It consists entirely of simple nodes joined by weighted connections. (with
the exception of the Dominant Image Orientation Unit, for which a neural network solution is
still to be developed.) Each node i in the network computes the sum of its j weighted inputs,
neti =

P
j wijxj . This is used as the input to a transfer function f , which is either linear,

f(neti) = neti, or the standard sigmoid, f(neti) =
1

1+e�neti
. There is a number of distinct levels.

Computation at one level must be completed before computation at the next level begins.
The only departure from a traditional neural network is that some weights are calculated at

runtime by nodes at prior levels. We call these dynamic weights. They allow the ISNNC to compute
dot products, and for nodes to act as gates controlling the transmission of the output of another
node. Since connection weights in any implementation are only references to a stored value, this
should not present any di�culty. Alternatively, the same functionality can be achieved by allowing
nodes which multiply their inputs, as used in Higher Order Neural Networks [25, 35].

11

4.1 Lie Vector Field Generation

4.1.1 Calculation of a Centroid Image

The �rst step is to compute the centroid of the image, since this must be the origin of coordinates.
This is done using a neural module which takes as its input a binary image, and outputs an image
which is zero everywhere except at the centroid, where it is one. The weights of the Centroid Image
Computation module are entirely hand-coded.

A quantity needed for this operation, and also later in the ISNNC, is Non, the total number of
\on" pixels in the input binary image I (xi; yj). This is given by

Non =

NxX
i=1

NyX
j=1

I (xi; yj): (38)

This can easily be computed by a node with a linear transfer function which has inputs from all
input nodes with weights of 1. The value used in later levels of the ISNNC is 1

Non
. Since the

input image size is �xed, it is trivial to build a neural module which interpolates f(x) = 1
x
with

any desired accuracy for the integer values fx : x 2 [0; NxNy]g [4]. It will be assumed that 1
Non

is
available.

The coordinates, (�x; �y), of the centroid of I (xi; yj) are

�x =
1

Non

NxX
i=1

NyX
j=1

I (xi; yj)xi �y =
1

Non

NxX
i=1

NyX
j=1

I (xi; yj) yi (39)

A system of two neurons can compute these quantities (see Figure 7). This illustrates the use
of dynamic weights. The weight on the connection between Nodes A and B is dynamic, as it is
computed from the number of ones in the input image. The weights on the connections to Node
A are the x-coordinates of the input nodes.These are �xed during the design process: there is no
sense in which a node needs to \know" its coordinates. An identical system computes �y.

Σ

xN

3x

x2

x1

I2

I1

I3

IN

Σ

1
Non

x

Node A Node B

Subsystem
Earlier

Figure 7: �x module.

Once �x and �y have been calculated, the Centroid Image is generated using two nodes for each
input node, as shown in Figure 8. The parameter � in Figure 8 (and similar �gures) determines
the gain of the sigmoids. In this study it was set to 100. The weights and inputs to Nodes A and
B are set so that they \�re" only if their coordinate is within � of the centroid. � = 0:5 was used,
since input nodes were assigned unit spacing. A neural AND of these nodes is calculated by Node
C.

This results in two images, one for the x coordinate and one for y. Each has a straight line of
activation corresponding to the centroid value for that coordinate. A neural AND of these images
is gives the �nal Centroid Image, IC , in which only the centroid node is one.

12

Σ

Σ
x)θ+i

α(

Σ
α

α

2

x

1

−3α

α

−α

x)θ+i-(α

Node B

Node C

Node A

{0 otherwise

1 if |x - x| < θi

{

Neural AND subsytem

Figure 8: Coordinate matching module for node xi. Output is 1 when jxi � �xj < �.

This admittedly complicated neural procedure for computing the centroid is of course unnec-
essary if the system is being simulated on a digital computer. A hybrid system in which some
calculations are not neural is a more e�cient solution in that case. The goal in this section,
however, is to show that parallel, neural solutions to these problems are possible.

4.1.2 Gating of Vector Fields

The Centroid Image is used to produce the rotation and dilation vector �elds: four images in
all. The weights from the Centroid Image are derived from Eqs. (34) and (35). Each centroid
image node has weights going to all the (linear) nodes in each vector �eld component layer. Each
weight has the value appropriate for the vector �eld at the destination node if the source node is
the centroid. Since all nodes of the Centroid Image are zero except for the centroid node, only
weights from the centroid node contribute to the vector �eld component images. Thus weights
corresponding to the vector �elds for all possible centroid positions are present in the network, but
only the appropriate ones contribute. Eq. (40) shows the function computed by a node (k; l) in
the rotation invariance vector �eld x-component image:

Rotx(k;l) =

xmaxX
i=0

ymaxX
j=0

w(i;j)(k;l)IC(i;j)
where w(i;j)(k;l) =

�(j � l)q
(j � l)

2
+ (i� k)

2
: (40)

It does not matter which node is chosen as the origin of coordinates when the weights are set,
only that it is consistent between layers. Similar weighting functions are used for the other vector
component images.

4.2 Local Orientation Extraction

4.2.1 A Tangent Estimate

To compute the Invariance Signature of a contour, it is necessary to estimate the tangent vector
at each point. A simple and robust estimate of the tangent vector at a point is the eigenvector
corresponding to the largest eigenvalue of the covariance matrix of a square window centred on
that point. The size of the window de�nes the number of orientations possible. Figure 9 shows the
tangent orientations estimated by this method for an image of a circle using a variety of window
sizes. The tangents estimated using a 5 � 5 window appear better than those from the 3 � 3,
but this comes at a computational cost, since the number of calculations is proportional to the
square of the window size. Moreover, the \best" choice of window size depends upon the scale
of the input contour. If the window size becomes large compared to the contour, the dominant
eigenvector of the covariance matrix becomes a poor estimator of the tangent, since the window is
likely to include extraneous parts of the contour. This is clear from the tangent estimates shown in
Figure 9(d). Consequently, we choose to use a 3�3 window, both for its computational advantage
and because it makes no assumptions about the scale of the input contour.

13

(a) Original Image (b) 3� 3 Window (c) 5� 5 Window (d) 35� 35 Window

Figure 9: Tangent estimation with varying window sizes, using the eigenvector corresponding to
the largest eigenvalue of the covariance matrix.

4.2.2 Discontinuities

Estimating this mapping is di�cult for a neural network, as it has two discontinuities. The �rst
arises when the dominant eigenvalue changes, and the orientation of the tangent estimate jumps
by �

2 radians. The second is due to the change in sign of the tangent vector when the orientation
goes from � back to 0.

The �rst discontinuity can be avoided by using a weighted tangent estimate: the magnitude
of the estimated tangent vector corresponds to \orientation strength". Let the eigenvalues of the
covariance matrix be �1 and �2, where �1 � �2. The corresponding unit eigenvectors are ê1 and
ê2. The weighted tangent vector estimate s is given by

s =

(�
1�

����2�1
���� ê1 if �1 6= 0;

0 if �1 = 0:
(41)

This weighting cause the magnitude of the estimated tangent vector to go to zero as
����2�1
���! 1, and

thus the �
2 jump is avoided.

4.2.3 Training a Neural Orientation Extraction Module

A neural orientation extraction module (NOEM) is required to estimate this mapping. It will be
replicated across the input layer to estimate the tangent at every point, resulting in two \tangent
images", one for each vector component. The values are gated by the input image (used as dynamic
weights), so that values are only transmitted for ones in the input . It was decided to produce this
module by training a network on this task.

A training set was produced consisting of all 256 possible binary 3� 3 input windows with a
centre value of 1, and, for each, the two outputs given by Eqs. (41). The performance measure
chosen, E, was the ratio of the sum squared error to a variance measure for the training set,

E =

PN
c=1

PM
j=1 (tcj � ycj)

2

PN
c=1

PM
j=1

�
tcj � tcj

�2 (42)

where N is the number of training exemplars, M the number of nodes in the output layer, tcj the
desired output value of the node and ycj the observed output value.

A variety of multilayer perceptrons (MLPs), with single hidden layers of di�ering sizes, was
trained, using backpropagation [30]. The accuracy of the approximation improved with increasing
hidden layer size (as expected for such a highly nonlinear function), and the training time increased.
The residual error did not stabilize, but continued to decrease steadily, albeit very slowly, as
training was continued. For the work reported in [37] a network with a 20 node hidden layer was
used. After 6� 106 iterations with a learning rate of 0.0005, a value of E = 3:11% was reached.

14

Further investigations (see Section 5.1) have shown that such seemingly small errors in the Local
Orientation Extraction module can adversely a�ect classi�cation performance. Consequently, a
more accurate module was sought.

Although single hidden layer MLPs are universal approximators, it has been suggested that
networks with multiple hidden layers can be useful for extremely nonlinear problems [32, 34]. Con-
sequently, several four-layer MLPs were tried. They converged more rapidly, and to a smaller
residual error. However, as with the single hidden layer networks, they were very sensitive to the
learning rate, suggesting that a more sophisticated learning algorithm might be more appropriate.
After an initial large reduction, the error continued to decrease very slowly throughout training.
Final accuracy was determined by how long one was prepared to wait, as much as by the number
of hidden nodes. The network �nally chosen had a residual error of 1.07%.

This problem is similar to edge extraction, although edge extraction is usually performed on
grey-scale images rather than binary, thin contours. Srinivasan et al. [38] developed a neural net-
work edge detector which produced a weighted vector output much like that described in Eq. (41).
They used an encoder stage which was trained competitively, followed by a backpropagation-trained
stage. The encoder produced weight distributions resembling Gabor �lters of various orientations
and phases. A more compact and accurate tangent estimator might be developed using an MBNN
incorporating a stage with Gabor weighting functions, as used in [7].

4.3 Calculation of the Local Measure of Consistency

The next stage of the network computes the Local Measure of Consistency at each point with
with respect to each of the Lie vector �elds. The output is an Invariance Image for each Lie
transformation: an image in which the value at each point is the absolute value of the dot product
of the estimated tangent vector and the Lie vector �eld (see Eq. (17)).

In the neural implementation, (see Figure 6), the x-component image from the Local Orientation
Extractor provides dynamic weights to be combined with the x-component of each vector �elds.
The same is done for the y-components. For each Lie transformation, there is thus a layer of
neurons, each of which have two inputs: one from each the vector �eld component image. These
are weighted by the corresponding Local Orientation images. Zeros in the input image have tangent
estimates of zero magnitude and thus make no contribution.

Σ
Rot (i,j)x

θx (i,j)

Rot (i,j)y

θ (i,j)y

θ (i,j) Rot(i,j)

Figure 10: Calculation of the dot product of the tangent estimate � and the vector �eld corre-
sponding to rotation, for the image point at coordinates (i; j).

Consider the subsystem corresponding to input image point (i; j). Figure 10 shows the �rst
stage of the calculation. Modules of this type are replicated for each point in the input image, and
for each Lie vector �eld image. The outputs of these modules are then passed through modules
which calculate their absolute values.

Figure 11 shows a neural module which calculates a good approximation of the absolute value
of its input. It is less accurate for inputs very close to zero, but in this application, where possible
orientations are coarsely quantized, this does not cause any problems. This completes the neural
calculation of the Local Measure of Consistency for each point with respect to each Lie vector �eld.
All that remains is to combine these into an Invariance Signature.

15

xx

Σ

Σ

Σ ~

α

−α

1

-1

Figure 11: Neural module which calculates the absolute value of its input.

4.4 Calculation of the Invariance Signature

The MBNN approach can produce modules that perform tasks not usually associated with neural
networks, as illustrated by the binning module in Figure 12. There is one such module for each of
the n bins of the Invariance Signature histogram for each invariance class. Each binning module is
connected to all nodes in the Invariance Image. The inputs are gated by the input image, ensuring
that only the N \on" nodes contribute.

(2n - 1)
(2i - 1)

−3α

{ Node D

Node C

Node A

Node B

α

α

α

2

1

x
α

−α

Σ
From other

Σ

Σ

(2n - 1)
(2i + 1)α

similar

1

1 if x is in bin i

0 otherwise{
Σ

N

sub-systems

N
1

1
N

Figure 12: Neural binning module.

The n bins have width 1
n�1 , since the �rst bin is centred on 0, and the last on 1 (Bins ending

at the extrema of the range would miss contributions from the extreme values, since the edges of
neural bins are not vertical). Nodes A and B have an output of 1 only when the input x is within
bin i, that is:

2i� 1

2(n� 1)
< x <

2i+ 1

2(n� 1)
: (43)

In order to detect this condition, the activations of Nodes A and B are set to:

netA = �x � �(2i� 1)

2(n� 1)
(44)

netB = ��x+ �(2i+ 1)

2(n� 1)
: (45)

The outputs of these nodes go to Node C, which computes a neural AND. Node D sums the
contributions to bin i from all N nodes.

16

This concludes the calculation of the Invariance Signature. The result is a signature consisting
of 3n values, where there are n bins in the histogram for each invariance class. This calcula-
tion has been achieved using a modular MBNN, where module functions are pre-de�ned, and are
independent of any training data. The building blocks of the modules are restricted to simple sum-
mation arti�cial neurons, with either linear or sigmoidal transfer functions. The sole departure
from standard neural network components is the introduction of dynamic weights, but these can
be eliminated if product neurons are used, as in Higher Order Neural Networks [25, 35]. This shows
the power of the modular approach to neural network design, and demonstrates that modules can
be designed which perform tasks that are not often considered to be part of the neural networks
domain, such as binning data.

A �nal module can be added, which is trained to classify patterns on the basis of the Invariance
Signature, rather than on the input patterns themselves. Classi�cation performance will thus be
guaranteed to be invariant under shift, rotation and scaling. The advantages of this approach are
demonstrated in Section 5.

5 Character Recognition with Invariance Signature Net-

works

It remains now to demonstrate that Invariance Signatures retain enough information to be usable
for pattern recognition, and that they are not unduly sensitive to the noisy data encountered
in real applications. To this end, the system is applied to the classi�cation of Roman alphabetic
characters, both for \perfect" machine-generated training and test data, and for scanned data. The
term \perfect" will be used throughout to describe data which is both noise-free and unambiguous.

5.1 Perfect Data

5.1.1 Departures from Exact Invariance

Despite the proven invariance properties of Invariance Signatures calculated for continuous contours
in the plane, departures from invariance occur in real applications in several ways. Scanned data
contains noise from the sensor, although the present quality of scanners makes this negligible for
this application. More important sources of error are discussed below.

Quantization Noise Noise is introduced into the tangent estimation procedure by the sampling
of the contour. Since the estimated orientation is quantized, the Local Measure of Consistency can
change when a contour is quantized at a new orientation. It is possible to compensate partially
for this e�ect by using su�ciently wide bins when calculating the Invariance Signature, but errors
still arise when the new estimated orientation moves the resultant �G across bin boundaries.

Ambiguous Characters In many fonts some letters are rotated or re
ected versions of others,
such as fb, d, p, qg and fn, ug. Consequently, it is impossible to classify isolated characters
into 26 classes if shift, rotation, scale and re
ection invariance is desired. Admittedly, re
ection
invariance is not usually desired, but it is an characteristic of the ISNNC. In commercial OCR
systems, context information (i.e. surrounding letter classi�cations and a dictionary) is used to
resolve ambiguities, which occur even in systems without inherent invariances. This approach
would be equally applicable as a post-processing stage for the ISNNC.

5.1.2 The Data Set

A computer can be used to produce a perfect data set, which is free from quantization noise and
contains no ambiguous characters. This set can be used to show that Invariance Signatures retain
su�cient information for classi�cation in the absence of noise, and these results can be used to
assess the performance of the system on real data.

A training data set was created using a screen version of the Helvetica font. Only the letters
fa, b, c, e, f, g, h, i, j, k, l, m, n, o, r, s, t, v, w, x, y, zg were used, so that ambiguity was avoided.

17

An 18�18 binary image of each letter was produced. This training data set is shown in Figure 13.

Figure 13: Training set of canonical examples of unambiguous characters.

A perfect test data set was created by computing re
ected and rotated versions of the training
data, where rotations were by multiples of �

2 radians, so that there was no quantization error. This
test data set is shown in Figure 14.

Figure 14: Test set of ideally shifted, rotated and re
ected letters.

5.1.3 Selected Networks Applied to this Problem

Simulations showed that this training set could be learnt by a network with no hidden layer: it is
linearly separable [24]. This was was also be true of the Invariance Signatures calculated from these
data. Two di�erent network architectures were constructed for comparison. The �rst was a MLP
with a 18� 18 input layer, no hidden layers, and a 1� 22 output layer. The other was an ISNNC,
with an 18� 18 input layer. Within this ISNNC, the Invariance Signature was calculated using 5
bins for each transformation. The resultant 15 node Invariance Signature layer was connected to
a 1� 22 output layer, forming a linear classi�er sub-network.

5.1.4 Reduction of Data Dimensionality

Although the Invariance Signature calculation stage of the ISNNC has to be run every time a new
pattern is classi�ed, Invariance Signatures of the training and test data need only be calculated
once. The classi�cation stage of the ISNNC can then be trained as a separate module. This can
lead to a great reduction in the training time. The number of weights np in a TNN is:

np =

N�1X
i=1

(nodes in layer)i�1 � (nodes in layer)i (46)

where N is the total number of layers, and i is the layer number, (the input layer is layer 0). The
iteration time during training is proportional to np, so, for this example, each iteration for the
Invariance Signature classi�cation module will be 18�18

3�5 = 21:6 times faster than for the TNN.

18

The calculation of the Invariance Signatures is time-consuming, but this time is recouped during
training when the input image is large, which is typically the case in real applications. ISNNCs
can reduce the dimensionality of the training data signi�cantly, and thus the training time for
the classi�cation network. Moreover, an ISNNC simulation on a sequential computer cannot take
advantage of the parallel, local computations that characterize many of the ISNNC modules. A
parallel implementation would be much faster.

5.1.5 Perfect and Network-Estimated Local Orientation

Since the NOEM (Section 4.2) has some residual error, two versions of the Invariance Signature
training and test data were created, one with the tangents calculated directly from the covariance
matrix eigenvectors, and the other using the NOEM. Results from these are compared to evaluate
the importance of accurate tangent extraction.

Ten instances of each network were made, each with a di�erent parameter initialization. All
were trained for 1000 iterations, using backpropagation. Patterns were assigned to the class cor-
responding to the highest output node value, so no patterns were rejected.

Results for Traditional Neural Networks The results obtained with TNNs are summarized
in Table 1. As expected, TNNs do not exhibit invariance, since the training data contained no
transformed versions of the patterns.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

�� � 100.00 � 0.00 15.00 � 0.45 100.00 � 0.00 13.64 � 0.00

Table 1: Classi�cation performance (% correct) of traditional neural network classi�ers trained for
1000 iterations with the data shown in Figure 13 and tested with the perfect data set in Figure 14.

The �nal performance of the TNNs is better than chance (1
22 = 4:5454%). It might be thought

that this is because some transformations of highly symmetrical training patterns resulted in
patterns very similar to the untransformed version (e.g.o, s, x and z). Analysis, however, shows
that this is not the case. The 12 correctly classi�ed test patterns are shown in Figure 15.

f1 i2 i4 j1 k1 k4 l1 m1 n1 n3 n4 y1

Figure 15: Test patterns classi�ed correctly by the TNNs.

No reason for these patterns being classi�ed correctly is apparent. It seems clear that chance
must play a part. For instance, i4 shares no \on" pixels with the training example of i. Marginally
better performance on the test data could have been achieved by employing an early-stopping
scheme. This would, however, have been at the cost of less than 100% correct performance on the
training data. It should be noted that the sum squared-error on the test set decreased throughout
training. A scheme based on the test set error would not improve performance in this case.

It must be acknowledged that TNNs could not be expected to perform better than chance on
this task. Their architecture provides no invariances, and generalization cannot be expected unless
transformed versions of the patterns are included in the training set. This argument can be used
against all the comparisons between TNNs and MBNNs in this paper: they are not fair. Never-
theless, these comparisons between naive applications of TNNs and speci�cally-designed MBNNs
demonstrate that MBNNs can perform successfully using training sets completely inadequate for
TNNs. Moreover, these MBNNs are of lower dimensionality than the TNNs. Providing the TNNs
with su�ciently large training sets would only make their training still more computationally-
expensive, with no guarantee of invariant performance.

19

Results with Perfect Local Orientation The results for the ten ISNNCs which used perfect
Local Orientation Extraction are summarized in Table 2. The average number of iterations for
100% correct classi�cation to be achieved was 220. Since the problem is linearly-separable, it
could in fact be solved directly, using a technique such as singular-valued decomposition [27].
Since weights may set by any method at all in the MBNN paradigm, this makes the comparison
of convergence times somewhat irrelevant. Nevertheless the MBNN modules, although taking on
average 4.4 times as many iterations to converge as the TNNs, were 4.9 times faster to train, due
to their lower dimensionality.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

�� � 100.00 � 0.00 100.00 � 0.00 100.00 � 0.00 100.00 � 0.00

Table 2: Classi�cation performance (% correct) of Invariance Signature Neural Network Classi�ers
(with perfect Local Orientation Extraction) trained for 1000 iterations with the data shown in
Figure 13 and tested with the perfect data set in Figure 14.

The ISNNCs generalize perfectly to the the test set. The network architecture constrains the
system to be shift-, rotation-, scale- and re
ection-invariant in the absence of quantization noise,
so this is no surprise. Importantly, the result indicates that su�cient information is retained in
the 5 bin Invariance Signatures for all 22 unambiguous letters of the alphabet to be distinguished.
Inspection of the sum squared error values after each iteration indicated that the error on the test
set was indeed identical to that on the training set: for perfect data, the ISNNC produces perfect
results.

Results using the NOEM The results above were obtained using a hybrid system, which used a
non-neural module to calculate the tangent at each point. The NOEM used here was trained using
backpropagation until 98.93% of the variance in the training data was explained (see Eq. (42)).
The Invariance Signatures for the test and training data were recalculated using this module, and
classi�cation modules were trained using these Invariance Signatures. Systems were produced with
both 5 and 10 bin Invariance Signatures. The results obtained are summarized in Tables 3 and 4.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

�� � 100.00 � 0.00 96.591 � 0.00 100.00 � 0.00 96.591 � 0.00

Table 3: Classi�cation performance (% correct) of 5 Bin Invariance Signature Neural Network
Classi�ers (with neural Local Orientation Extraction) trained for 1000 iterations with the data
shown in Figure 13 and tested with the perfect data set in Figure 14.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

�� � 100.00 � 0.00 95.455 � 0.00 100.00 � 0.00 93.182 � 0.00

Table 4: Classi�cation performance (% correct) of 10 Bin Invariance Signature Neural Network
Classi�ers (with neural Local Orientation Extraction) trained for 1000 iterations with the data
shown in Figure 13 and tested with the perfect data set in Figure 14.

The misclassi�ed patterns for the 5 bin ISNNCs are shown in Figure 16. t1 and t2 were
classi�ed as f, which is understandable, since there is very little di�erence between the patterns.
t4 was misclassi�ed as a. All ten networks had these same misclassi�cations.

These results show that residual error in the NOEM causes a degradation of the classi�cation
performance of the ISNNCs. They are, however, still far superior to those for the TNNs. Moreover,
there is no reason that the NOEM could not be trained further. It is expected that performance
would continue to approach 100% as the accuracy of the module was improved.

20

t1

!
f t2

!
f t4

!
a

Figure 16: Test Patterns Misclassi�ed by the 5 Bin Invariance Signature Neural Network Classi�ers,
and the training examples as which they were incorrectly classi�ed.

The results for the 10 bin system in Table 4 show that the e�ects of inaccuracies in the NOEM
are greater when the number of bins is increased. This is due to the fact that the errors can cause
the consistency measure at a point to change bins more easily this way, thus altering the Invariance
Signature histogram.

5.2 Optical Character Recognition

Having demonstrated that Invariance Signatures retain su�cient information for the classi�cation
of \perfect" data, it remains to show that the system can be used for transformation invariant
pattern recognition in the presence of sensor and quantization noise. To this end, it was decided
to apply ISNNCs to the classi�cation of scanned images of shifted and rotated printed alphabetic
characters.

5.2.1 The Data Set

The training and test sets were created using all 26 letters of the English alphabet, with each
character appearing in 18 di�erent orientations, at increments of 20 degrees. Shifts arose also,
because characters were extracted from the scanned image of all these characters using a technique
which took no account of centroid position.

An A4 page with these characters printed on it by a laser printer at 300 dots per inch was
scanned at 75 dots per inch using a UMAX Vista-S6 Scanner. The connected regions in this image
were detected, and the minimum bounding-box for the largest character was calculated (56 � 57
pixels). The image was then segmented into separate characters, and each character was thinned
using an algorithm due to Chen and Hsu [9]. The training set consisted of the 234 characters
rotated by angles in the range [0�; 160�] relative to the upright characters, and the test set of those
in the range [180�; 340�]. Examples of the resultant scanned, extracted and thinned characters are
shown in Figures 17 and 18.

Figure 17: Examples from the training set of thinned, scanned characters.

It is interesting to compare the subjective visual similarity between the Invariance Signatures
both within and between classes for these data. Figure 19 shows the �rst four training examples
of the letter a, accompanied by images showing the tangent estimates. The tangent estimate is
represented by a line segment with the orientation of the estimated tangent. The weight assigned
to each estimated tangent is not shown.

21

Figure 18: Examples from the test set of thinned, scanned characters.

It is not easy to interpret the similarity between these tangent representations of the contours.
For this, it is necessary to see the Invariance Signatures. Figure 20 shows the Invariance Signature
histograms for the patterns in Figure 19. It is apparent that there is a great (subjective) simi-
larity between these representations. They are not identical, as a result of the noise discussed in
Section 5.1. For classi�cation purposes, however, it is necessary only that the signatures be more
similar within each letter class than between classes. This must be determined by experiment.

Figures 21 and 22 show the equivalent data for the letter x. These again show the marked
within-class similarity, and are distinctly di�erent to the signatures for the letter a: these letters
were deliberately chosen since a is \quite rotationally-invariant", whereas x is \quite dilationally-
invariant".

5.2.2 Selected Networks Employed for this Problem

The methodology employed was identical to that used for the synthetic data, described in Sec-
tion 5.1.3. The TNN used had a 56 � 57 node input layer, and a 1 � 26 output layer, giving a
massive 83018 independent weights to be estimated. With only 234 training patterns and 83018
parameters, this problem is almost certain to be linearly separable. This was veri�ed by simulation.

A variety of classi�cation modules was tried, for ISNNCs with both 5 and 10 bin Invariance
Signatures. These included linear classi�er, and a variety of MLPs with di�ering hidden layer sizes.
These experiments indicated that 5 bin Invariance Signatures were insu�cient for this problem,
and that it was not linearly separable. It also became clear that the errors introduced by the
slightly inaccurate NOEM caused a signi�cant departure from invariance.

For these reasons, the results presented are for 10 bin ISNNCs with directly-MLP classi�cation
module. The MLP classi�er had a 3� 10 node input layer, a 15 node hidden layer, and a 26 node
output layer. This classi�er has only 881 weights to be estimated, a reduction of 99% compared
to the TNN linear classi�er. This translates to a dramatic reduction in both the storage space
and the training time required. Only �ve TNNs were trained, partly because of the training time
needed, and partly because the results were so consistent.

5.2.3 Results for Traditional Neural Networks

It might have been expected that the TNNs would perform better on this task than on that
described in Section 5.1.3, since this training set contains di�erently transformed versions of the
canonical untransformed characters. As can be seen from Table 5, the results are in fact slightly
worse (average best percent correct of 13.932 � 0.300 compared with 15.000 � 0.454). Although
better than chance (3.85% correct), these results are completely inadequate for an optical character
recognition system.

22

a00 Raw Image a00 Tangents a01 Raw Image a01 Tangents

a02 Raw Image a02 Tangents a03 Raw Image a03 Tangents

Figure 19: Tangents estimated for training examples of the letter a.

5.2.4 Results for Invariance Signature Neural Network Classi�ers

The results obtained with ISNNCs appear in Table 6. The ISNNCs achieved a much higher correct
classi�cation rate on the test set than the TNNs. The failure of the ISNNCs to achieve 100%
correct classi�cation of the training set is not surprising. The test and training sets used for this
problem have each character of the alphabet mapped to a separate class. Yet, as was discussed
in Section 5.1, the sets of characters fb, d, p, qg and fn, ug are identical under rotations and
re
ections: transformations under which the ISNNC output is invariant. The expected training
set performance for noise-free data is thus 100� (20 + 0:25� 4 + 0:5� 2)=26 = 85% correct. Any
performance on the training data better than this must be the result of the �tting of noise in the
training data.

In order to assess this e�ect, training and test sets were created in which fb, d, p, qg were
assigned the same label, as were fn, ug. The results are shown in Table 7. The average �nal test
set performance was improved by 14.8% by this re-labeling, which is very close to the maximum
possible 15.4% achievable if this were the only source of error.

The residual di�erence between training and test set error is generalization error, rather than
invariance error. These networks were trained with only 9 examples of each character, and these
examples are quite noisy. There is the unavoidable quantization noise, but there are also some
quite marked artifacts, such as loops introduced by the thinning algorithm, one of which can be
seen in pattern a03 in Figure 20. There are also two erroneous test patterns, the result of clipping
in the segmentation process. These were retained, as such errors can and do occur in practical
applications.

5.2.5 Failure Analysis

The errors made by the ISNNCs are not random. To illustrate this, a failure analysis is presented
in Table 8 for Network 5 from Table 7, showing how the test patterns were misclassi�ed. Patterns
which are perceptually similar are responsible for many of the misclassi�cations. This means that
prior information about likely errors could be used in conjunction with these classi�cations to aid
error correction. This analysis indicates that ISNNCs often make errors that appear \human",
which is a promising indication that the Invariance Signature measures contour similarity in a way
similar to humans.

Inspection of the thinned patterns used indicated that the patterns for the letters fi, j, lg were

23

a00 Rotation a00 Dilation a00 Translation

a01 Rotation a01 Dilation a01 Translation

a02 Rotation a02 Dilation a02 Translation

a03 Rotation a03 Dilation a03 Translation

Figure 20: 5 bin Invariance Signatures for training examples of the letter a.

little more than straight lines. If these were to be re-labeled as the same character, �nal test set
performance for Network 5 would improve to 91.026% correct. If the same were done for ff, tg,
which are also extremely similar, test set performance would be 93.162% correct.

The misclassi�cations of patterns to the classes b and n may be due to the fact that the re-
labeled dataset implies a non-uniform prior probability distribution for these classes: b was used
as the target class for input patterns corresponding to fb, d, p, qg, and thus occurs four times
more frequently in the training data than standard classes. Similarly, n was used as the target for
inputs fn, ug. Networks will tend to \guess" these classes more frequently than the others [3].

Given the extremely small training set, this is a remarkable result, comparable with character
recognition results achieved by others with thousands of training patterns. Such re-relabeling is an
essential feature of a truly invariant optical character recognition system, since some characters are
inherently ambiguous. Others are extremely similar, and noise can render them indistinguishable.

24

x00 Raw Image x00 Tangents x01 Raw Image x01 Tangents

x02 Raw Image x02 Tangents x03 Raw Image x03 Tangents

Figure 21: Tangents estimated for training examples of the letter x.

In practical optical character recognition systems, a dictionary is used to verify recognized words,
and context is used to correct erroneously labeled patterns. Alternatively, the orientation of cor-
rectly classi�ed unambiguous characters could be used to infer the correct labeling of ambiguous
characters.

Perhaps most importantly, these results show that ISNNCs can correctly classify patterns which
have been transformed by arbitrarily large amounts. The shifts and rotations of the input images
are not restricted to small perturbations of the training patterns. This indicates that the ISNNCs
are performing truly invariant pattern recognition, rather than interpolation-based generalization.

This study should be considered to be a \proof of concept", both for the Invariance Signature
as a contour descriptor, and for MBNNs which classify on that basis. It is not intended to be
a large-scale experiment which corresponds to a real application. Such a study would require
much greater quantities of data than are used here. We believe, however, that the experiments
presented demonstrate that the Invariance Signatures are genuinely useful for robust invariant
pattern recognition. The quality of the results obtained is very pleasing, when the size of the
training sets is compared to those used in other neural network approaches to optical character
recognition.

6 Conclusion

In Section 2, a new invariant feature of two-dimensional contours was developed: the Invariance
Signature. We believe that the Invariance Signature is a powerful descriptor of contour shape,
which is closely-related to measures employed in human perception. Its application is by no means
limited to neural networks.

The development of the Invariance Signature was inspired by the desire to �nd an invariant
contour descriptor which was suitable for calculation in a neural network, and which corresponded
well to theories of human contour perception. Since Lie group theory provides the link between
the local changes in the positions of points under the action of a transformation and the global
speci�cation of the transformation, it provides the natural starting point. The Invariance Signature
is a global measure of the degree of invariance of a given contour with respect to a set of Lie
transformations, which, however, is constructed from local calculations. It is this that makes the
Invariance Signature attractive for use in an MBNN.

25

x00 Rotation x00 Dilation x00 Translation

x01 Rotation x01 Dilation x01 Translation

x02 Rotation x02 Dilation x02 Translation

x03 Rotation x03 Dilation x03 Translation

Figure 22: 5 bin Invariance Signatures for training examples of the letter x.

The core of the Invariance Signature approach is this: rather than seeking individual invariant
features of a contour, the Invariance Signature measures the degree to which the contour is invariant
under a transformation. The statistics of these departures from invariance are themselves an
invariant descriptor of the contour.

In Section 4, it was shown that an MBNN could be constructed which calculated the Invariance
Signature of a contour, and used this as the basis for classi�cation. Since the Invariance Signature
is shift-, rotation-, scale- and re
ection-invariant, the output of this network is guaranteed to be
invariant under these transformations. This network is called the Invariance Signature Neural
Network Classi�er. The ISNNC consists of a wide variety of modules, which perform tasks as
diverse as tangent vector estimation and the binning of data. The weights of all modules in the
ISNNC except the �nal MLP classi�er are speci�ed independently of the training set; some are
speci�ed directly, others are determined by training the module on a sub-task. The result is a

26

Best Performance Final Performance
Training Data Test Data Training Data Test Data

�� � 100.00 � 0.00 13.932 � 0.300 100.00 � 0.00 10.940 � 0.209

Table 5: Classi�cation performance (% correct) of Traditional Neural Network Classi�ers trained
for 200 iterations with the data described in Section 5.2.1.

collection of simple nodes joined by weighted connections, as in traditional neural network.
In order to be useful, the Invariance Signature must not only be invariant, but must retain

su�cient information for contour classes to be distinguished. That this is so is demonstrated in
Section 5. When applied to noise-free, unambiguous data, the ISNNC produced perfect results.
Excellent results were also obtained using scanned data. It might be said that the comparisons were
unfair, since the training sets used were inadequate for good TNN performance to be expected.
That only emphasizes one of the key advantages of the MBNN approach: large training sets are
not required.

For both the perfect data and the scanned character task, the dimensionality of the classi�cation
module was very much lower for the ISNNCs than it was for the TNNs. The training time for the
ISNNCs was correspondingly shorter. Moreover, the dimensionality of the ISNNC classi�er can be
varied by the designer, by changing the number of bins for the discrete Invariance Signatures.

These experiments indicate that the Invariance Signature can be successfully employed for the
recognition of scanned characters independent of rotations and shifts, and that this technique can
be implemented in a MBNN. Since the ISNNCs are guaranteed to be invariant under shift, scaling,
rotation and re
ection, and training set performance on the noisy data was 99:06� 0:63 percent
correct, it can be concluded that test set performance below this level is due to failure to generalize
in the presence of noise, not failure to generalize in the sense of invariance. If the size of the training
set were increased, test set performance could be expected to approach 100 percent correct.

27

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 95.726 72.650 95.726 71.795
Network 2 96.154 72.222 96.154 70.940
Network 3 96.154 73.077 96.154 69.658
Network 4 95.299 73.932 95.299 70.513
Network 5 94.872 71.795 94.872 71.368
Network 6 95.726 72.650 95.726 68.803
Network 7 96.154 73.504 96.154 69.658
Network 8 97.436 72.222 97.436 70.513
Network 9 94.444 74.359 94.444 69.658
Network 10 96.154 70.940 96.154 70.940

�� � 95.812 � 0.783 72.735 � 0.971 95.812 � 0.783 70.385 � 0.877

Table 6: Classi�cation performance (% correct) of 10 bin Invariance Signature Neural Network
Classi�ers (with perfect Local Orientation Extraction) trained for 40000 iterations with the data
described in Section 5.2.1.

Best Performance Final Performance
Training Data Test Data Training Data Test Data

Network 1 98.718 87.179 98.718 87.179
Network 2 99.145 83.761 99.145 82.906
Network 3 99.573 86.752 99.145 85.897
Network 4 99.573 86.752 99.145 85.043
Network 5 98.718 88.034 98.718 88.034
Network 6 99.573 85.897 99.145 85.470
Network 7 100.00 85.897 100.00 83.761
Network 8 98.291 86.325 98.291 85.043
Network 9 97.863 86.752 97.863 85.043
Network 10 99.145 84.615 99.145 83.761

�� � 99.056 � 0.628 86.196 � 1.179 99.056 � 0.628 85.214 � 1.483

Table 7: Classi�cation performance (% correct) of 10 bin Invariance Signature Neural Network
Classi�ers (with perfect Local Orientation Extraction) trained for 10000 iterations with the data
described in Section 5.2.1, modi�ed to label characters which can be transformed into each other
as the same character.

Misclassi�cations
d ! n f ! t f ! j i ! l i ! l i ! l i ! l

i ! l i ! l j ! r k ! f k ! r k ! f l ! i

m ! h n ! b n ! b q ! n r ! f r ! y r ! k

r ! i t ! f t ! f t ! f t ! f u ! h w ! m

Table 8: Failure analysis for Network 5 from Table 7.

28

References

[1] J�urgen Altmann and Herbert J.P. Reitb�ock. A fast correlation method for scale- and
translation-invariant pattern recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(1):46{57, January 1984.

[2] Dana Harry Ballard and Christopher M. Brown. Computer Vision. Prentice{Hall, Englewood
Cli�s, New Jersey 07632, 1982.

[3] Etienne Barnard and Elizabeth C. Botha. Back-propagation uses prior information e�ciently.
IEEE Transactions on Neural Networks, 4(5):794{802, September 1993.

[4] A. Bulsari. Some analytical solutions to the general approximation problem for feedforward
neural networks. Neural Networks, 6(7):991{996, 1993.

[5] Terry Caelli and Peter Dodwell. Orientation-position coding and invariance characteristics of
pattern discrimination. Perception and Psychophysics, 36(2):159{168, 1984.

[6] Terry M. Caelli and Zhi-Qiang Liu. On the minimum number of templates required for shift,
rotation and size invariant pattern recognition. Pattern Recognition, 21(3):205{216, 1988.

[7] Terry M. Caelli, David McG. Squire, and Tom P.J. Wild. Model-based neural networks. Neural
Networks, 6:613{625, 1993.

[8] T.M. Caelli, G.A.N. Preston, and E.R. Howell. Implications of spatial summation models for
processes of contour perception: A geometric perspective. Vision Research, 18:723{734, 1978.

[9] Y-S. Chen and W-H. Hsu. A modi�ed fast parallel algorithm for thinning digital patterns.
Pattern Recognition, 7:99{106, 1988.

[10] Gloria Chow and Xiaobo Li. Towards a system for automatic facial feature detection. Pattern
Recognition, 1993.

[11] James B. Cole, Hiroshi Murase, and Seiichiro Naito. A Lie group theoretic approach to the
invariance problem in feature extraction and object recognition. Pattern Recognition Letters,
12:519{523, September 1991.

[12] M. Ferraro and T. Caelli. The relationship between integral transform invariances and Lie
group theory. Journal of the Optical Society of America (A), 5:738{742, 1988.

[13] Mario Ferraro and Terry M. Caelli. Lie transform groups, integral transforms, and invariant
pattern recognition. Spatial Vision, 8(1):33{44, 1994.

[14] David Forsyth, Joseph L. Mundy, and Andrew Zisserman. Transformational invariance - a
primer. Image and Vision Computing, 10(1):39{45, 1992.

[15] W. C. Ho�man. The Lie algebra of visual perception. Journal of Mathematical Psychology,
3:65{98, 1966.

[16] W. C. Ho�man. The Lie transformation group approach to visual neuropsychology. In
E. Leewenberg and H. Bu�art, editors, Formal theories of visual perception, pages 27{66.
Wiley, New York, 1978.

[17] D. Hubel and T. Wiesel. Receptive �elds, binocular interaction and functional architecture in
the cat's visual cortex. Journal of Physiology, 160:106{154, 1962.

[18] Anil K. Jain. Fundamentals of digital image processing. Prentice-Hall information and system
sciences series. Prentice-Hall International, London, 1989.

[19] Alireza Khotanzad and Jiin-Her Lu. Classi�cation of invariant image representations using a
neural network. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(6):1028{
1038, June 1990.

29

[20] Reiner Lenz. Group invariant pattern recognition. Pattern Recognition, 23(1/2):199{217,
1990.

[21] S.Z. Li. Matching: Invariant to translations, rotations and scale changes. Pattern Recognition,
25(6):583{594, 1992.

[22] Xiaobo Li and Nicholas Roeder. Experiments in detecting face contours. In Vision Interface
Conference, May 1994.

[23] Feng Lin and Robert D. Brandt. Towards absolute invariants of images under translation,
rotation and dilation. Pattern Recognition Letters, 14:369{379, May 1993.

[24] Marvin Minsky and Seymour Papert. Perceptrons. An introduction to computational geometry.
The MIT Press, Cambridge, London, 1969.

[25] Stavros J. Perantonis and Paulo J.G. Lisboa. Translation, rotation, and scale invariant pattern
recognition by higher-order neural networks and moment classi�ers. IEEE Transactions on
Neural Networks, 3(2):241{251, March 1992.

[26] David A. Pintsov. Invariant pattern recognition, symmetry, and radon transforms. Journal
of the Optical Society of America (A), 6(10):1544{1554, October 1989.

[27] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numer-
ical Recipes in C : The Art of Scienti�c Computing. Press Syndicate of the University of
Cambridge, Cambridge, U.K., 2 edition, 1992.

[28] A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic Press, Orlando, FL., 1982.

[29] Jacob Rubinstein, Joseph Segman, and Yehoshua Zeevi. Recognition of distorted patterns by
invariance kernels. Pattern Recognition, 24(10):959{967, 1991.

[30] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323:533{536, 1986.

[31] S.L. Salas, Einar Hille, and John T. Anderson. Calculus: One and several variables, with
analytic geometry. John Wiley & Sons, New York, �fth edition, 1986.

[32] Warren S. Sarle. Neural networks and statistical models. In Proceedings of the Nineteenth
Annual SAS Users Group International Conference, April 1994.

[33] Joseph Segman, Jacob Rubinstein, and Yehoshua Y. Zeevi. The canonical coordinates method
for pattern deformation: Theoretical and computational considerations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(12):1171{1183, December 1992.

[34] Eduardo D. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE Transactions
on Neural Networks, 3:981{990, 1992.

[35] Lilly Spirkovska and Max B. Reid. Higher-order neural networks applied to 2D and 3D object
recognition. Machine Learning, 15(2):169{199, 1994.

[36] David McG. Squire. Model-based Neural Networks for Invariant Pattern Recognition. PhD
thesis, School of Computing, Curtin University of Technology, Perth, Western Australia, Oc-
tober 1996.

[37] David McG. Squire and Terry M. Caelli. Shift, rotation and scale invariant signatures for
two-dimensional contours, in a neural network architecture. In Stephen W. Ellacott, John C.
Mason, and Iain J. Anderson, editors, Mathematics of Neural Networks: Models Algorithms
and Applications, Statistics and OR, pages 344{348, Boston, July 1995. Kluwer Academic
Publishers.

[38] V. Srinivasan, P. Bhatia, and S.H. Ong. Edge detection using a neural network. Pattern
Recognition, 27(12):1653{1662, 1994.

30

[39] Harry Wechsler. Computational Vision. Academic Press Inc., 1250 Sixth Avenue, San Diego,
CA 92101, 1990.

[40] Christopher Zetzsche and Terry Caelli. Invariant pattern recognition using multiple �lter
image represtations. Computer Vision, Graphics and Image Processing, 45:251{262, 1989.

31

